1
|
Fumwakwau JK, Derra K, Nzolo DB, Mampunza SMM, Phanzu DM. Cohort Profile: Kimpese Health and Demographic Surveillance System, Democratic Republic of Congo. Int J Epidemiol 2024; 53:dyae150. [PMID: 39576711 DOI: 10.1093/ije/dyae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Affiliation(s)
- Joel Kiniati Fumwakwau
- Kimpese Health Research Centre (KHRC), Health Demographic Surveillance System, Kongo Central, Democratic Republic of Congo
- Institute of Economic and Social Research, Faculty of Economics and Management, University of Kinshasa (UNIKIN), Democratic Republic of Congo
| | - Karim Derra
- Research Institute for Health Sciences/Clinical Research Unit of Nanoro (IRSS-CRUN), Nanoro, Burkina Faso
| | - Didier Bomene Nzolo
- Kimpese Health Research Centre (KHRC), Health Demographic Surveillance System, Kongo Central, Democratic Republic of Congo
- Clinical Pharmacology and Pharmacovigilance Unit, University of Kinshasa (UNIKIN), Democratic Republic of Congo
| | - Samuel Ma Miezi Mampunza
- Kimpese Health Research Centre (KHRC), Health Demographic Surveillance System, Kongo Central, Democratic Republic of Congo
- Faculty of Medicine, Protestant University in Congo (UPC), Kinshasa, Democratic Republic of Congo
| | - Delphin Mavinga Phanzu
- Kimpese Health Research Centre (KHRC), Health Demographic Surveillance System, Kongo Central, Democratic Republic of Congo
- Department of Research and Health Development, Evangelical Medical Institute (IME) of Kimpese, Kongo Central, Democratic Republic of Congo
- Department of Public Health, University President Joseph Kasa-Vubu (UKV), Boma, Democratic Republic of Congo
| |
Collapse
|
2
|
Tchatchouang S, Andre Mbongue Mikangue C, Kenmoe S, Bowo-Ngandji A, Mahamat G, Thierry Ebogo-Belobo J, Serge Mbaga D, Rodrigue Foe-Essomba J, Numfor H, Irma Kame-Ngasse G, Nyebe I, Bosco Taya-Fokou J, Zemnou-Tepap C, Félicité Yéngué J, Nina Magoudjou-Pekam J, Gertrude Djukouo L, Antoinette Kenmegne Noumbissi M, Kenfack-Momo R, Aimee Touangnou-Chamda S, Flore Feudjio A, Gael Oyono M, Paola Demeni Emoh C, Raoul Tazokong H, Zeukeng F, Kengne-Ndé C, Njouom R, Flore Donkeng Donfack V, Eyangoh S. Systematic review: Global host range, case fatality and detection rates of Mycobacterium ulcerans in humans and potential environmental sources. J Clin Tuberc Other Mycobact Dis 2024; 36:100457. [PMID: 39026996 PMCID: PMC11254744 DOI: 10.1016/j.jctube.2024.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Fundamental aspects of the epidemiology and ecology of Mycobacterium ulcerans (MU) infections including disease burden, host range, reservoir, intermediate hosts, vector and mode of transmission are poorly understood. Understanding the global distribution and burden of MU infections is a paramount to fight against Buruli ulcer (BU). Four databases were queried from inception through December 2023. After critical review of published resources on BU, 155 articles (645 records) published between 1987 and 2023 from 16 countries were selected for this review. Investigating BU in from old endemic and new emerging foci has allowed detection of MU in humans, animals, plants and various environmental samples with prevalence from 0 % up to 100 % depending of the study design. A case fatality rate between 0.0 % and 50 % was described from BU patients and deaths occurred in Central African Republic, Gabon, Democratic Republic of the Congo, Burkina Faso and Australia. The prevalence of MU in humans was higher in Africa. Nucleic Acid Amplification Tests (NAAT) and non-NAAT were performed in > 38 animal species. MU has been recovered in culture from possum faeces, aquatic bugs and koala. More than 7 plant species and several environmental samples have been tested positive for MU. This review provided a comprehensive set of data on the updates of geographic distribution, the burden of MU infections in humans, and the host range of MU in non-human organisms. Although MU have been found in a wide range of environmental samples, only few of these have revealed the viability of the mycobacterium and the replicative non-human reservoirs of MU remain to be explored. These findings should serve as a foundation for further research on the reservoirs, intermediate hosts and transmission routes of MU.
Collapse
Affiliation(s)
| | | | - Sebastien Kenmoe
- Virology Department, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | | | | | - Hycenth Numfor
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Mycobacteriology, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | | | | | | | | | | | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaoundé, Cameroon
| | | | | | - Francis Zeukeng
- Department Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | | | - Sara Eyangoh
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Mycobacteriology, Centre Pasteur du Cameroun, Yaounde, Cameroon
| |
Collapse
|
3
|
Ayerakwa EA, Abban MK, Isawumi A, Mosi L. Profiling Mycobacterium ulcerans: sporulation, survival strategy and response to environmental factors. Future Sci OA 2023; 9:FSO845. [PMID: 37026027 PMCID: PMC10072065 DOI: 10.2144/fsoa-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer – a necrotizing skin infection. As an environmental pathogen, it has developed stress response mechanisms for survival. Similar to endospore formation in M. marinum, it is likely that M. ulcerans employs sporulation mechanisms for its survival and transmission. In this review, we modeled possible transmission routes and patterns of M. ulcerans from the environment to its host. We provided insights into the evolution of M. ulcerans and its genomic profiles. We discuss reservoirs of M. ulcerans as an environmental pathogen and its environmental survival. We comprehensively discuss sporulation as a possible stress response mechanism and modelled endospore formation in M. ulcerans. At last, we highlighted sporulation associated markers, which upon expression trigger endospore formation.
Collapse
|
4
|
Van Der Werf TS, Barogui YT, Converse PJ, Phillips RO, Stienstra Y. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol 2020; 13:391-401. [PMID: 32310683 DOI: 10.1080/17512433.2020.1752663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pharmacological treatment of Buruli ulcer (Mycobacterium ulcerans infection; BU) is highly effective, as shown in two randomized trials in Africa. AREAS COVERED We review BU drug treatment - in vitro, in vivo and clinical trials (PubMed: '(Buruli OR (Mycobacterium AND ulcerans)) AND (treatment OR therapy).' We also highlight the pathogenesis of M. ulcerans infection that is dominated by mycolactone, a secreted exotoxin, that causes skin and soft tissue necrosis, and impaired immune response and tissue repair. Healing is slow, due to the delayed wash-out of mycolactone. An array of repurposed tuberculosis and leprosy drugs appears effective in vitro and in animal models. In clinical trials and observational studies, only rifamycins (notably, rifampicin), macrolides (notably, clarithromycin), aminoglycosides (notably, streptomycin) and fluoroquinolones (notably, moxifloxacin, and ciprofloxacin) have been tested. EXPERT OPINION A combination of rifampicin and clarithromycin is highly effective but lesions still take a long time to heal. Novel drugs like telacebec have the potential to reduce treatment duration but this drug may remain unaffordable in low-resourced settings. Research should address ulcer treatment in general; essays to measure mycolactone over time hold promise to use as a readout for studies to compare drug treatment schedules for larger lesions of Buruli ulcer.
Collapse
Affiliation(s)
- Tjip S Van Der Werf
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands.,Pulmonary Diseases & Tuberculosis, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| | - Yves T Barogui
- Ministère De La Sante ́, Programme National Lutte Contre La Lèpre Et l'Ulcère De Buruli , Cotonou, Benin
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research , Baltimore, Maryland, USA
| | - Richard O Phillips
- Kumasi, Ghana And Kwame Nkrumah University of Science and Technology, Komfo Anokye Teaching Hospital , Kumasi, Ghana
| | - Ymkje Stienstra
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| |
Collapse
|
5
|
Treatment Outcome of Patients with Buruli Ulcer Disease in Togo. PLoS Negl Trop Dis 2015; 9:e0004170. [PMID: 26474069 PMCID: PMC4608783 DOI: 10.1371/journal.pntd.0004170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Following introduction of antimycobacterial treatment of Buruli ulcer disease (BUD), several clinical studies evaluated treatment outcomes of BUD patients, in particular healing times, secondary lesions and functional limitations. Whereas recurrences were rarely observed, paradoxical reactions and functional limitations frequently occurred. Although systematic BUD control in Togo was established as early as 2007, treatment outcome has not been reviewed to date. Therefore, a pilot project on post-treatment follow-up of BUD patients in Togo aimed to evaluate treatment outcomes and to provide recommendations for optimization of treatment success. METHODOLOGY/PRINCIPAL FINDINGS Out of 199 laboratory confirmed BUD patients, 129 could be enrolled in the study. The lesions of 109 patients (84.5%) were completely healed without any complications, 5 patients (3.9%) had secondary lesions and 15 patients (11.6%) had functional limitations. Edema, category III ulcers >15 cm, healing times >180 days and a limitation of movement at time of discharge constituted the main risk factors significantly associated with BUD related functional limitations (P<0.01). Review of all BUD related documentation revealed major shortcomings, in particular concerning medical records on adjuvant surgical and physiotherapeutic treatment. CONCLUSIONS/SIGNIFICANCE This study presents the first systematic analysis of treatment outcome of BUD patients from Togo. Median times to healing and the absence of recurrences were in line with findings reported by other investigators. The percentage of functional limitations of 11.6% was lower than in other studies, and edema, category III ulcers, healing time >180 days and limitation of movement at discharge constituted the main risk factors for functional limitations in Togolese BUD patients. Standardized treatment plans, patient assessment and follow-up, as well as improved management of medical records are recommended to allow for intensified monitoring of disease progression and healing process, to facilitate implementation of therapeutic measures and to optimize treatment success.
Collapse
|
6
|
Clinical Epidemiology of Buruli Ulcer from Benin (2005-2013): Effect of Time-Delay to Diagnosis on Clinical Forms and Severe Phenotypes. PLoS Negl Trop Dis 2015; 9:e0004005. [PMID: 26355838 PMCID: PMC4565642 DOI: 10.1371/journal.pntd.0004005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/23/2015] [Indexed: 01/05/2023] Open
Abstract
Buruli Ulcer (BU) is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions), lesions' size (>15 cm diameter) or WHO Category (WHO Category 3 lesions). There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque) the median time-delay was 32.5 days (IQR 30.0-67.5), while for ulcerated forms it was 60 days (IQR 20.0-120.0) (p = 0.009), and for bone lesions, 365 days (IQR 228.0-548.0). On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56-217.5; p = 0.09), larger lesions (diameter >15 cm) (median 60 days; IQR 30-120; p = 0.92) or category 3 WHO classification (median 60 days; IQR 30-150; p = 0.20), when compared with unifocal (median 60 days; IQR 30-90), small lesions (diameter ≤15 cm) (median 60 days; IQR 30-90), or WHO category 1+2 lesions (median 60 days; IQR 30-90), respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and focal/multi-focal progression. Therefore, in future studies on BU epidemiology, severe clinical forms should be systematically considered as distinct phenotypes of the same disease and thus subjected to specific risk factor investigation.
Collapse
|
7
|
Clinical features and risk factors of oedematous Mycobacterium ulcerans lesions in an Australian population: beware cellulitis in an endemic area. PLoS Negl Trop Dis 2014; 8:e2612. [PMID: 24392172 PMCID: PMC3879256 DOI: 10.1371/journal.pntd.0002612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/14/2013] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Oedematous lesions are a less common but more severe form of Mycobacterium ulcerans disease. Misdiagnosis as bacterial cellulitis can lead to delays in treatment. We report the first comprehensive descriptions of the clinical features and risk factors of patients with oedematous disease from the Bellarine Peninsula of south-eastern Victoria, Australia. METHODS Data on all confirmed Mycobacterium ulcerans cases managed at Barwon Health, Victoria, were collected from 1/1/1998-31/12/2012. A multivariate logistic regression model was used to assess associations with oedematous forms of Mycobacterium ulcerans disease. RESULTS Seventeen of 238 (7%) patients had oedematous Mycobacterium ulcerans lesions. Their median age was 70 years (IQR 17-82 years) and 71% were male. Twenty-one percent of lesions were WHO category one, 35% category two and 41% category three. 16 (94%) patients were initially diagnosed with cellulitis and received a median 14 days (IQR 9-17 days) of antibiotics and 65% required hospitalization prior to Mycobacterium ulcerans diagnosis. Fever was present in 50% and pain in 87% of patients. The WCC, neutrophil count and CRP were elevated in 54%, 62% and 75% of cases respectively. The median duration of antibiotic treatment was 84 days (IQR 67-96) and 94% of cases required surgical intervention. On multivariable analysis, there was an increased likelihood of a lesion being oedematous if on the hand (OR 85.62, 95% CI 13.69-535.70; P<0.001), elbow (OR 7.83, 95% CI 1.39-43.96; p<0.001) or ankle (OR 7.92, 95% CI 1.28-49.16; p<0.001), or if the patient had diabetes mellitus (OR 9.42, 95% CI 1.62-54.74; p = 0.02). CONCLUSIONS In an Australian population, oedematous Mycobacterium ulcerans lesions present with similar symptoms, signs and investigation results to, and are commonly mistakenly diagnosed for, bacterial limb cellulitis. There is an increased likelihood of oedematous lesions affecting the hand, elbow or ankle, and in patients with diabetes.
Collapse
|