1
|
Owoloye A, Olufemi M, Idowu ET, Oyebola KM. Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum. Malar J 2021; 20:451. [PMID: 34856982 PMCID: PMC8638531 DOI: 10.1186/s12936-021-03987-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapy (ACT). However, the emergence of artemisinin (ART) partial resistance in Southeast Asia and emerging reports of delayed parasite sensitivity to ACT in African parasites signal a gradual trend towards treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is necessary to stop resistance in its tracks. Mutations in Plasmodium falciparum genes pfk13, pfcoronin and pfatpase6 have been linked with ART partial resistance. Methods Findings from published research articles on the prevalence of pfk13, pfcoronin and pfatpase6 polymorphisms in Africa were collated. PubMed, Embase and Google Scholar were searched for relevant articles reporting polymorphisms in these genes across Africa from 2014 to August 2021, for pfk13 and pfcoronin. For pfatpase6, relevant articles between 2003 and August 2021 were retrieved. Results Eighty-seven studies passed the inclusion criteria for this analysis and reported 742 single nucleotide polymorphisms in 37,864 P. falciparum isolates from 29 African countries. Five validated-pfk13 partial resistance markers were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, F446I in Mali, C580Y in Ghana, and P553L in an Angolan isolate. In Tanzania, three (L263E, E431K, S769N) of the four mutations (L263E, E431K, A623E, S769N) in pfatpase6 gene associated with high in vitro IC50 were reported. pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya, and Congo, with P76S being the most prevalent mutation. Conclusions This meta-analysis provides an overview of the prevalence and widespread distribution of pfk13, pfcoronin and pfatpase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria across the continent. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03987-6.
Collapse
Affiliation(s)
- Afolabi Owoloye
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria.,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Michael Olufemi
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria.,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Kolapo M Oyebola
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria. .,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria. .,Sickle Cell Branch, National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Niba PTN, Nji AM, Evehe MS, Ali IM, Netongo PM, Ngwafor R, Moyeh MN, Ngum LN, Ndum OE, Acho FA, Mbu'u CM, Fosah DA, Atogho-Tiedeu B, Achonduh-Atijegbe O, Djokam-Dadjeu R, Chedjou JPK, Bigoga JD, Moukoko CEE, Ajua A, Achidi E, Tallah E, Leke RGF, Tourgordi A, Ringwald P, Alifrangis M, Mbacham WF. Drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon: a systematic review and meta-analysis (1998-2020). Malar J 2021; 20:32. [PMID: 33422080 PMCID: PMC7796563 DOI: 10.1186/s12936-020-03543-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Malaria remains highly endemic in Cameroon. The rapid emergence and spread of drug resistance was responsible for the change from monotherapies to artemisinin-based combinations. This systematic review and meta-analysis aimed to determine the prevalence and distribution of Plasmodium falciparum drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon from January 1998 to August 2020. METHODS The PRISMA-P and PRISMA statements were adopted in the inclusion of studies on single nucleotide polymorphisms (SNPs) of P. falciparum anti-malarial drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfatp6, Pfcytb and Pfk13). The heterogeneity of the included studies was evaluated using the Cochran's Q and I2 statistics. The random effects model was used as standard in the determination of heterogeneity between studies. RESULTS Out of the 902 records screened, 48 studies were included in this aggregated meta-analysis of molecular data. A total of 18,706 SNPs of the anti-malarial drug resistance genes were genotyped from 47,382 samples which yielded a pooled prevalence of 35.4% (95% CI 29.1-42.3%). Between 1998 and 2020, there was significant decline (P < 0.0001 for all) in key mutants including Pfcrt 76 T (79.9%-43.0%), Pfmdr1 86Y (82.7%-30.5%), Pfdhfr 51I (72.2%-66.9%), Pfdhfr 59R (76.5%-67.8%), Pfdhfr 108 N (80.8%-67.6%). The only exception was Pfdhps 437G which increased over time (30.4%-46.9%, P < 0.0001) and Pfdhps 540E that remained largely unchanged (0.0%-0.4%, P = 0.201). Exploring mutant haplotypes, the study observed a significant increase in the prevalence of Pfcrt CVIET mixed quintuple haplotype from 57.1% in 1998 to 57.9% in 2020 (P < 0.0001). In addition, within the same study period, there was no significant change in the triple Pfdhfr IRN mutant haplotype (66.2% to 67.3%, P = 0.427). The Pfk13 amino acid polymorphisms associated with artemisinin resistance were not detected. CONCLUSIONS This review reported an overall decline in the prevalence of P. falciparum gene mutations conferring resistance to 4-aminoquinolines and amino alcohols for a period over two decades. Resistance to artemisinins measured by the presence of SNPs in the Pfk13 gene does not seem to be a problem in Cameroon. Systematic review registration PROSPERO CRD42020162620.
Collapse
Affiliation(s)
- Peter Thelma Ngwa Niba
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Akindeh M Nji
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie-Solange Evehe
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Innocent M Ali
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Palmer Masumbe Netongo
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Randolph Ngwafor
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- National Malaria Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Marcel N Moyeh
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lesley Ngum Ngum
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Oliva Ebie Ndum
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Université Des Montagnes, Banganté, West Region, Cameroon
| | - Fon Abongwa Acho
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
| | - Cyrille Mbanwi Mbu'u
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Microbiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Dorothy A Fosah
- National Malaria Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Barbara Atogho-Tiedeu
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Rosine Djokam-Dadjeu
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Kengne Chedjou
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jude D Bigoga
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Carole Else Eboumbou Moukoko
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Service, Centre Pasteur Cameroon, Yaoundé, Cameroon
| | - Anthony Ajua
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Eric Achidi
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Esther Tallah
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon
| | - Rose G F Leke
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon
| | - Alexis Tourgordi
- The Cameroon Office of the World Health Organization, Yaoundé, Cameroon
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wilfred F Mbacham
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon.
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon.
| |
Collapse
|
3
|
Djaman JA, Olefongo D, Ako AB, Roman J, Ngane VF, Basco LK, Tahar R. Molecular Epidemiology of Malaria in Cameroon and Côte d'Ivoire. XXXI. Kelch 13 Propeller Sequences in Plasmodium falciparum Isolates before and after Implementation of Artemisinin-Based Combination Therapy. Am J Trop Med Hyg 2017; 97:222-224. [PMID: 28719312 DOI: 10.4269/ajtmh.16-0889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Artemisinin-resistant malaria has not been reported from Africa, but resistance can possibly spread from Asia or arise independently in Africa. The emergence of artemisinin resistance in Africa can be monitored by molecular assay of Kelch 13 (K13) propeller sequences. A total of 251 archived DNA samples of Plasmodium falciparum isolates collected in 2002, 2003, and 2006 in Yaounde, Cameroon, and 47 samples collected in 2006 and 2013 in Abidjan, Côte d'Ivoire, were analyzed for K13-propeller sequence polymorphism. Only one isolate carried a mutant K13-propeller allele (E602D). None of the isolates carried the key mutant alleles (Y493H, R539T, I543T, and C580Y) associated with artemisinin resistance in Cambodia. The presence of the mutant allele was not correlated with in vitro response to dihydroartemisinin determined by the classical hypoxanthine incorporation assay. There was no evidence of K13 mutations associated with artemisinin resistance before and soon after the introduction of artemisinin-based combination therapies in Cameroon and Côte d'Ivoire.
Collapse
Affiliation(s)
- Joseph Allico Djaman
- Département de Parasitologie-Mycologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Laboratoire de Pharmacodynamie Biochimique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Dagnogo Olefongo
- Département de Parasitologie-Mycologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Laboratoire de Pharmacodynamie Biochimique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Aristide Berenger Ako
- Département de Parasitologie-Mycologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Laboratoire de Pharmacodynamie Biochimique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Jocelyne Roman
- PRES Sorbonne Paris Cité, Université Paris Descartes Faculté de Pharmacie, Paris, France.,Unité Mixte de la Recherche 216, Mère et Enfant Face aux Infections Tropicales, Institut de Recherche pour le Développement (IRD), Unité de Formation et de Recherche (UFR) de Pharmacie, Université Paris Descartes, Paris, France
| | - Vincent Foumane Ngane
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Leonardo K Basco
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Rachida Tahar
- Unité Mixte de la Recherche 216, Mère et Enfant Face aux Infections Tropicales, Institut de Recherche pour le Développement (IRD), Unité de Formation et de Recherche (UFR) de Pharmacie, Université Paris Descartes, Paris, France.,Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon.,PRES Sorbonne Paris Cité, Université Paris Descartes Faculté de Pharmacie, Paris, France
| |
Collapse
|
4
|
Mita T, Tachibana SI, Hashimoto M, Hirai M. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites. Expert Rev Anti Infect Ther 2015; 14:125-35. [PMID: 26535806 DOI: 10.1586/14787210.2016.1106938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.
Collapse
Affiliation(s)
- Toshihiro Mita
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Shin-Ichiro Tachibana
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Muneaki Hashimoto
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Makoto Hirai
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| |
Collapse
|
5
|
Occurrence of pfatpase6 Single Nucleotide Polymorphisms Associated with Artemisinin Resistance among Field Isolates of Plasmodium falciparum in North-Eastern Tanzania. Malar Res Treat 2015; 2015:279028. [PMID: 25685593 PMCID: PMC4313681 DOI: 10.1155/2015/279028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022] Open
Abstract
We aimed to determine the current prevalence of four P. falciparum candidate artemisinin resistance biomarkers L263E, E431K, A623E, and S769N in the pfatpase6 gene in a high transmission area in Tanzania in a retrospective cross sectional study using 154 archived samples collected from three previous malaria studies in 2010, 2011 and 2013. Mutations in pfatpase6 gene were detected in parasite DNA isolated from Dried Blood Spots by using PCR-RFLP. We observed overall allelic frequencies for L263E, E431K, A623E, and S769N to be 5.8% (9/154), 16.2% (25/154), 0.0% (0/154), and 3.9% (6/154). The L263E mutation was not detected in 2010 but occurred at 3.9% and 2.6% in 2011 and 2013 respectively. The L263E mutation showed a significant change of frequency between 2010 and 2011, but not between 2011 and 2013 (P < 0.05). Frequency of E431K was highest of all without any clear trend whereas S769N increased from 2.2% in 2010 to 3.6% in 2011 and 5.1% in 2013. A623E mutation was not detected. The worrisome detection and the increase in the frequency of S769N and other mutations calls for urgent assessment of temporal changes of known artemisinin biomarkers in association with in vivo ACT efficacy.
Collapse
|
6
|
Therapeutic efficacy of artemisinin combination therapies and prevalence of S769N mutation in PfATPase6 gene of Plasmodium falciparum in Kolkata, India. ASIAN PAC J TROP MED 2013; 6:443-8. [DOI: 10.1016/s1995-7645(13)60071-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/15/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022] Open
|
7
|
Miao M, Wang Z, Yang Z, Yuan L, Parker DM, Putaporntip C, Jongwutiwes S, Xangsayarath P, Pongvongsa T, Moji H, Dinh Tuong T, Abe T, Nakazawa S, Kyaw MP, Yan G, Sirichaisinthop J, Sattabongkot J, Mu J, Su XZ, Kaneko O, Cui L. Genetic diversity and lack of artemisinin selection signature on the Plasmodium falciparum ATP6 in the Greater Mekong Subregion. PLoS One 2013; 8:e59192. [PMID: 23555629 PMCID: PMC3608609 DOI: 10.1371/journal.pone.0059192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
The recent detection of clinical Artemisinin (ART) resistance manifested as delayed parasite clearance in the Cambodia-Thailand border area raises a serious concern. The mechanism of ART resistance is not clear; but the P. falciparum sarco/endoplasmic reticulum Ca2+-ATPase (PfSERCA or PfATP6) has been speculated to be the target of ARTs and thus a potential marker for ART resistance. Here we amplified and sequenced pfatp6 gene (∼3.6 Kb) in 213 samples collected after 2005 from the Greater Mekong Subregion, where ART drugs have been used extensively in the past. A total of 24 single nucleotide polymorphisms (SNPs), including 8 newly found in this study and 13 nonsynonymous, were identified. However, these mutations were either uncommon or also present in other geographical regions with limited ART use. None of the mutations were suggestive of directional selection by ARTs. We further analyzed pfatp6 from a worldwide collection of 862 P. falciparum isolates in 19 populations from Asia, Africa, South America and Oceania, which include samples from regions prior to and after deployments ART drugs. A total of 71 SNPs were identified, resulting in 106 nucleotide haplotypes. Similarly, many of the mutations were continent-specific and present at frequencies below 5%. The most predominant and perhaps the ancestral haplotype occurred in 441 samples and was present in 16 populations from Asia, Africa, and Oceania. The 3D7 haplotype found in 54 samples was the second most common haplotype and present in nine populations from all four continents. Assessment of the selection strength on pfatp6 in the 19 parasite populations found that pfatp6 in most of these populations was under purifying selection with an average dN/dS ratio of 0.333. Molecular evolution analyses did not detect significant departures from neutrality in pfatp6 for most populations, challenging the suitability of this gene as a marker for monitoring ART resistance.
Collapse
Affiliation(s)
- Miao Miao
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zenglei Wang
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zhaoqing Yang
- Parasitology Department, Kunming Medical College, Kunming, Yunnan, China
| | - Lili Yuan
- Parasitology Department, Kunming Medical College, Kunming, Yunnan, China
| | - Daniel M. Parker
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok, Thailand
| | - Phonepadith Xangsayarath
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Tiengkham Pongvongsa
- Station of Malariology, Parasitology and Entomology, North Phonesavang Village, Kaysone District, Savannakhet Province, Laos
| | - Hazuhiko Moji
- Research Institute for Humanity and Nature, Kyoto, Japan
| | - Trinh Dinh Tuong
- Department of Epidemiology, National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Tomoko Abe
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Shusuke Nakazawa
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Myat Phone Kyaw
- Parasitology Research Division, Department of Medical Research-Lower Myanmar, Yangon, Myanmar
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | | | | | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zatra R, Lekana-douki JB, Lekoulou F, Bisvigou U, Ngoungou EB, Ndouo FST. In vitro antimalarial susceptibility and molecular markers of drug resistance in Franceville, Gabon. BMC Infect Dis 2012; 12:307. [PMID: 23153201 PMCID: PMC3534593 DOI: 10.1186/1471-2334-12-307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/29/2012] [Indexed: 01/15/2023] Open
Abstract
Background Malaria remains a major public health problem, due largely to emergence and widespread P. falciparum drug resistance. WHO recommends artemisinine combination based therapy (ACT) to overcome P. falciparum drug resistance, but reports of declining ACT efficacy have been published. A thorough understanding of the molecular bases of P. falciparum resistance to existing drugs is therefore needed. The aims of this study were to analyze the in vitro sensitivity of P. falciparum field isolates from Franceville, Gabon, to chloroquine (CQ), mefloquine (MF), dihydroartemisinine (DHA) and monodesethylamodiaquine (MDAQ), and to investigate polymorphisms associated with drug resistance. Methods We conducted a cross-sectional study of 53 field isolates. Field isolates sensitivity to CQ, MF, DHA and MDAQ was assessed using the colorimetric DELI test. The Pfmdr1 codons 86 and 1246, Pfcrt (haplotype codon 72 to 76) and the PfATPAse6 codons 110 and 2694 were analysed by PCR-RFLP. Associations between drug sensitivity and parasite gene polymorphisms were evaluated with the Chi square test, and routine hematological parameters were analyzed with Fisher’s exact test implemented with Epinfo software. In all statistical tests, significance was assumed at p<0.05. Results A total of 46 P. falciparum isolates were successfully cultured in vitro and their sensitivity was tested. The proportions of isolates resistant to CQ, MF and MDAQ were 43.5%, 23.4% and 56.5%, respectively. Some isolates (23.9%) had DHA IC50 values higher than 10 nM. The median IC50 values were 71.67 (interquartile range (IQR, 1–438.2), 6.59 (IQR, 0.08-96), 64.79 (IQR, 0.09-448) and 6.45 nM (IQR, 0.09-23) for CQ, MF, MDAQ and DHA, respectively. The strongest correlation between diminished DHA sensitivity and MF resistance was observed (r2=0.73), followed by correlation between diminished DHA sensitivity and CQ resistance. Cross-resistance between CQ and MF was also observed. The prevalence of the 86Y and 1246Y mutations in Pfmdr1, 76T in Pfcrt, and 110A and 2694T in PfATPase6 was respectively 42% and 17.1%, 97.8%, and 0% and 22.2%. Conclusion These high levels of antimalarial drug resistance in Franceville, Gabon, call for reinforced surveillance of drug efficacy.
Collapse
Affiliation(s)
- Rafika Zatra
- Unité de Parasitologie Médicale (UPARAM), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | | | | | | |
Collapse
|
9
|
Menemedengue V, Sahnouni K, Basco L, Tahar R. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination. Am J Trop Med Hyg 2011; 85:22-5. [PMID: 21734119 DOI: 10.4269/ajtmh.2011.10-0523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.
Collapse
Affiliation(s)
- Virginie Menemedengue
- Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale, Institut de Recherche pour le Développement, Yaoundé, Cameroon
| | | | | | | |
Collapse
|
10
|
Protein-based signatures of functional evolution in Plasmodium falciparum. BMC Evol Biol 2011; 11:257. [PMID: 21917172 PMCID: PMC3197514 DOI: 10.1186/1471-2148-11-257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/14/2011] [Indexed: 02/06/2023] Open
Abstract
Background It has been known for over a decade that Plasmodium falciparum proteins are enriched in non-globular domains of unknown function. The potential for these regions of protein sequence to undergo high levels of genetic drift provides a fundamental challenge to attempts to identify the molecular basis of adaptive change in malaria parasites. Results Evolutionary comparisons were undertaken using a set of forty P. falciparum metabolic enzyme genes, both within the hominid malaria clade (P. reichenowi) and across the genus (P. chabaudi). All genes contained coding elements highly conserved across the genus, but there were also a large number of regions of weakly or non-aligning coding sequence. These displayed remarkable levels of non-synonymous fixed differences within the hominid malaria clade indicating near complete release from purifying selection (dN/dS ratio at residues non-aligning across genus: 0.64, dN/dS ratio at residues identical across genus: 0.03). Regions of low conservation also possessed high levels of hydrophilicity, a marker of non-globularity. The propensity for such regions to act as potent sources of non-synonymous genetic drift within extant P. falciparum isolates was confirmed at chromosomal regions containing genes known to mediate drug resistance in field isolates, where 150 of 153 amino acid variants were located in poorly conserved regions. In contrast, all 22 amino acid variants associated with drug resistance were restricted to highly conserved regions. Additional mutations associated with laboratory-selected drug resistance, such as those in PfATPase4 selected by spiroindolone, were similarly restricted while mutations in another calcium ATPase (PfSERCA, a gene proposed to mediate artemisinin resistance) that reach significant frequencies in field isolates were located exclusively in poorly conserved regions consistent with genetic drift. Conclusion Coding sequences of malaria parasites contain prospectively definable domains subject to neutral or nearly neutral evolution on a scale that appears unrivalled in biology. This distinct evolutionary landscape has potential to confound analytical methods developed for other genera. Against this tide of genetic drift, polymorphisms mediating functional change stand out to such an extent that evolutionary context provides a useful signal for identifying the molecular basis of drug resistance in malaria parasites, a finding that is of relevance to both genome-wide and candidate gene studies in this genus.
Collapse
|
11
|
Ding XC, Beck HP, Raso G. Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol 2010; 27:73-81. [PMID: 21169061 DOI: 10.1016/j.pt.2010.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/14/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Artemisinins are efficacious antimalarial drugs widely employed as first-line treatment in endemic countries under the form of combined therapies. Different molecular modes of action have been postulated to explain the parasiticidal effect of these compounds; however, none has been unequivocally accepted, and their physiological relevance is still questioned. Similarly, no definite genetic determinant of Plasmodium sensitivity to artemisinins has been identified so far. A better understanding of the mode of action of artemisinins and the genetic basis of laboratory-induced or field-observed altered susceptibility is crucial for malaria control. In this review different models of artemisinins' molecular action are briefly presented, focusing on recent advances, and the evidence of potential association between various gene polymorphisms and artemisinin resistance is comprehensively reviewed.
Collapse
Affiliation(s)
- Xavier C Ding
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire.
| | | | | |
Collapse
|
12
|
Gama BE, de Oliveira NKA, de Souza JM, Santos F, de Carvalho LJM, Melo YFC, Rosenthal PJ, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Brazilian Plasmodium falciparum isolates: investigation of candidate polymorphisms for artemisinin resistance before introduction of artemisinin-based combination therapy. Malar J 2010; 9:355. [PMID: 21143867 PMCID: PMC3017535 DOI: 10.1186/1475-2875-9-355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/08/2010] [Indexed: 12/02/2022] Open
Abstract
Background This study was performed to better understand the genetic diversity of known polymorphisms in pfatpase6 and pfmdr1 genes before the introduction of ACT in Brazil, in order to get a genotypic snapshot of Plasmodium falciparum parasites that may be used as baseline reference for future studies. Methods Parasites from P. falciparum samples collected in 2002, 2004 and 2006-2007 were genotyped using PCR and DNA sequencing at codons 86, 130, 184, 1034, 1042, 1109 and 1246 for pfmdr1 gene, and 243, 263, 402, 431, 623, 630, 639, 683, 716, 776, 769 and 771 for pfatpase6 gene. Results A pfmdr1 haplotype NEF/CDVY was found in 97% of the samples. In the case of pfatpase6, four haplotypes, wild-type (37%), 630 S (35%), 402 V (5%) and double-mutant 630 S + 402 V (23%), were detected. Conclusion Although some polymorphism in pfmdr1 and pfatpase6 were verified, no reported haplotypes in both genes that may mediate altered response to ACT was detected before the introduction of this therapy in Brazil. Thus, the haplotypes herein described can be very useful as a baseline reference of P. falciparum populations without ACT drug pressure.
Collapse
Affiliation(s)
- Bianca E Gama
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ), Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Krishna S, Pulcini S, Fatih F, Staines H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol 2010; 26:517-23. [DOI: 10.1016/j.pt.2010.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022]
|
14
|
Ballif M, Hii J, Marfurt J, Crameri A, Fafale A, Felger I, Beck HP, Genton B. Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology. Malar J 2010; 9:270. [PMID: 20925934 PMCID: PMC2959069 DOI: 10.1186/1475-2875-9-270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/06/2010] [Indexed: 11/14/2022] Open
Abstract
Background Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. Methods The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. Results The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. Conclusion This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the presence of a very homogenous P. falciparum population circulating in the community. Although CQ+SP could still clear most infections, seven fixed mutations associated with CQ resistance and two fixed mutations related to SP resistance were observed. Whether the absence of mutations in pfATPase6 indicates the efficacy of artemisinin derivatives remains to be proven.
Collapse
Affiliation(s)
- Marie Ballif
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Biology of Infection, Department of Epidemiology and Public Health, Socinstrasse 57, 4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Menegon M, Talha AA, Severini C, Elbushra SM, Mohamedani AA, Malik EM, Mohamed TA, Wernsdorfer WH, Majori G, Nour BYM. Frequency distribution of antimalarial drug resistance alleles among Plasmodium falciparum isolates from Gezira State, central Sudan, and Gedarif State, eastern Sudan. Am J Trop Med Hyg 2010; 83:250-7. [PMID: 20682863 DOI: 10.4269/ajtmh.2010.09-0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In 2004, Sudan adopted artesunate + sulfadoxine/pyrimethamine (SP) combination as the first-line drug, in response to the high level of falciparum resistance to antimalarials. In 2007, a molecular study on antimalarial resistance linked genes, pfcrt, pfmdr1, pfdhfr, pfdhps, and pfATPase6, was conducted on 198 isolates from central and eastern Sudan. We observed a high frequency of point mutations at almost all loci analyzed, mainly of pfcrt 76T (72.7%), pfdhfr 51I (75.3%), and pfdhfr 108N (72.7%) alleles. The MARK III in vitro test for chloroquine sensitivity in 45 P. falciparum isolates showed that 37.8% of the isolates were low resistant and 6.7% were fully resistant. This study represents the most recent molecular investigation on antimalarial resistance in this area after the adoption of artemisinin-based combination therapy (ACT), and underlines the importance of the analysis of SP resistance evolution to monitor the efficacy of ACT therapy in endemic areas.
Collapse
Affiliation(s)
- Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Valderramos SG, Scanfeld D, Uhlemann AC, Fidock DA, Krishna S. Investigations into the role of the Plasmodium falciparum SERCA (PfATP6) L263E mutation in artemisinin action and resistance. Antimicrob Agents Chemother 2010; 54:3842-52. [PMID: 20566762 PMCID: PMC2935017 DOI: 10.1128/aac.00121-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/17/2010] [Accepted: 06/07/2010] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) are highly effective for the treatment of Plasmodium falciparum malaria, yet their sustained efficacy is threatened by the potential spread of parasite resistance. Recent studies have provided evidence that artemisinins can inhibit the function of PfATP6, the P. falciparum ortholog of the ER calcium pump SERCA, when expressed in Xenopus laevis oocytes. Inhibition was significantly reduced in an L263E variant, which introduced the mammalian residue into a putative drug-binding pocket. To test the hypothesis that this single mutation could decrease P. falciparum susceptibility to artemisinins, we implemented an allelic-exchange strategy to replace the wild-type pfatp6 allele by a variant allele encoding L263E. Transfected P. falciparum clones were screened by PCR analysis for disruption of the endogenous locus and introduction of the mutant L263E allele under the transcriptional control of a calmodulin promoter. Expression of the mutant allele was demonstrated by reverse transcriptase (RT) PCR and verified by sequence analysis. Parasite clones expressing wild-type or L263E variant PfATP6 showed no significant difference in 50% inhibitory concentrations (IC(50)s) for artemisinin or its derivatives dihydroartemisinin and artesunate. Nonetheless, hierarchical clustering analysis revealed a trend toward reduced susceptibility that neared significance (artemisinin, P approximately = 0.1; dihydroartemisinin, P = 0.053 and P = 0.085; and artesunate, P = 0.082 and P = 0.162 for the D10 and 7G8 lines, respectively). Notable differences in the distribution of normalized IC(50)s provided evidence of decreased responsiveness to artemisinin and dihydroartemisinin (P = 0.02 for the D10 and 7G8 lines), but not to artesunate in parasites expressing mutant PfATP6.
Collapse
Affiliation(s)
- Stephanie Gaw Valderramos
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, SW17 ORE, United Kingdom, Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York 10032
| | - Daniel Scanfeld
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, SW17 ORE, United Kingdom, Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York 10032
| | - Anne-Catrin Uhlemann
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, SW17 ORE, United Kingdom, Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York 10032
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, SW17 ORE, United Kingdom, Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York 10032
| | - Sanjeev Krishna
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, SW17 ORE, United Kingdom, Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|