1
|
Cornille M, Moriceau S, Khonsari RH, Heuzé Y, Loisay L, Boitez V, Morice A, Arnaud E, Collet C, Bensidhoum M, Kaci N, Boddaert N, Paternoster G, Rauschendorfer T, Werner S, Mansour SL, Di Rocco F, Oury F, Legeai-Mallet L. FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model. J Exp Med 2022; 219:213050. [PMID: 35254402 PMCID: PMC8906494 DOI: 10.1084/jem.20201879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/09/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
Crouzon syndrome with acanthosis nigricans (CAN, a rare type of craniosynostosis characterized by premature suture fusion and neurological impairments) has been linked to a gain-of-function mutation (p.Ala391Glu) in fibroblast growth factor receptor 3 (FGFR3). To characterize the CAN mutation's impact on the skull and on brain functions, we developed the first mouse model (Fgfr3A385E/+) of this syndrome. Surprisingly, Fgfr3A385E/+ mice did not exhibit craniosynostosis but did show severe memory impairments, a structurally abnormal hippocampus, low activity-dependent synaptic plasticity, and overactivation of MAPK/ERK and Akt signaling pathways in the hippocampus. Systemic or brain-specific pharmacological inhibition of FGFR3 overactivation by BGJ398 injections rescued the memory impairments observed in Fgfr3A385E/+ mice. The present study is the first to have demonstrated cognitive impairments associated with brain FGFR3 overactivation, independently of skull abnormalities. Our results provide a better understanding of FGFR3's functional role and the impact of its gain-of-function mutation on brain functions. The modulation of FGFR3 signaling might be of value for treating the neurological disorders associated with craniosynostosis.
Collapse
Affiliation(s)
- Maxence Cornille
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale UMR1163, Paris, France
| | - Stéphanie Moriceau
- Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants–Malades, Depart: Cell growth and Signaling, Université Paris-Sorbonne–Paris Cité, Paris, France
| | - Roman H. Khonsari
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale UMR1163, Paris, France,Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker–Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre de Référence Maladies Rares Fentes et Malformations Faciales MAFACE, Filière Maladies Rares TeteCou, Université de Paris, Paris, France
| | - Yann Heuzé
- UMR5199 PACEA, Centre National de la Recherche Scientifique, Ministère de la Culture, Université de Bordeaux, Pessac, France
| | - Léa Loisay
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale UMR1163, Paris, France
| | - Valérie Boitez
- Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants–Malades, Depart: Cell growth and Signaling, Université Paris-Sorbonne–Paris Cité, Paris, France
| | - Anne Morice
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale UMR1163, Paris, France,Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker–Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre de Référence Maladies Rares Fentes et Malformations Faciales MAFACE, Filière Maladies Rares TeteCou, Université de Paris, Paris, France
| | - Eric Arnaud
- Service de Neurochirurgie, Hôpital Necker–Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre de Référence Maladies Rares Craniosténoses et Malformations Craniofaciales CRANIOST, Filière Maladies Rares TeteCou, Université de Paris, Paris, France
| | - Corinne Collet
- Service de Biochimie et Biologie Moléculaire–PôleB2P, Centre Hospitalier Universitaire Paris-GH St-Louis Lariboisière F.Widal–Hôpital Lariboisière, Paris, France
| | - Morad Bensidhoum
- LaboratoireB2OA, Unité Mixte de Recherche CNRS7052, Université de Paris, Paris, France
| | - Nabil Kaci
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale UMR1163, Paris, France
| | - Nathalie Boddaert
- UMR-1163 Institut Imagine, Hôpital Necker–Enfants Malades, Assistance Publique–Hôpitaux de Paris, Paris, France,Département de Radiologie Pédiatrique, Hôpital Necker–Enfants Malades, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Giovanna Paternoster
- Service de Neurochirurgie, Hôpital Necker–Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre de Référence Maladies Rares Craniosténoses et Malformations Craniofaciales CRANIOST, Filière Maladies Rares TeteCou, Université de Paris, Paris, France
| | - Theresa Rauschendorfer
- Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | | | - Federico Di Rocco
- Hôpital Femme Mère Enfant Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Franck Oury
- Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants–Malades, Depart: Cell growth and Signaling, Université Paris-Sorbonne–Paris Cité, Paris, France
| | - Laurence Legeai-Mallet
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale UMR1163, Paris, France,Correspondence to Laurence Legeai-Mallet:
| |
Collapse
|
2
|
Corpus Callosum Agenesis: An Insight into the Etiology and Spectrum of Symptoms. Brain Sci 2020; 10:brainsci10090625. [PMID: 32916978 PMCID: PMC7565833 DOI: 10.3390/brainsci10090625] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Brain hemispheres are connected by commissural structures, which consist of white matter fiber tracts that spread excitatory stimuli to various regions of the cortex. This allows an interaction between the two cerebral halves. The largest commissure is the corpus callosum (CC) which is located inferior to the longitudinal fissure, serving as its lower border. Sometimes this structure is not completely developed, which results in the condition known as agenesis of the corpus callosum (ACC). The aim of this paper was to review the latest discoveries related to the genetic and metabolic background of ACC, including the genotype/phenotype correlations as well as the clinical and imaging symptomatology. Due to various factors, including genetic defects and metabolic diseases, the development of CC may be impaired in many ways, which results in complete or partial ACC. This creates several clinical implications, depending on the specificity of the malformation and other defects in patients. Epilepsy, motor impairment and intellectual disability are the most prevalent. However, an asymptomatic course of the disease is even more common. ACC presents with characteristic images on ultrasound and magnetic resonance imaging (MRI).
Collapse
|