1
|
Wang Y, Chai Y, Wang J, Gao M, Zang W, Chang Y. Effect of clinical whole exome sequencing in aetiological investigation and reproductive risk prediction for a couple with monogenic inherited diseases. Front Genet 2024; 15:1364769. [PMID: 38873112 PMCID: PMC11169610 DOI: 10.3389/fgene.2024.1364769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Objective To determine the genetic causes of monogenic inherited diseases in a couple using clinical whole exome sequencing (WES) and advise on their reproductive choices. Methods WES was applied to a couple seeking reproductive advice, the female with short stature and the male with congenital cataracts. Results (1) The woman exhibited a 13.8 Kb heterozygous deletion at chrX: 591590-605428 (hg19). This region corresponds to exons 2-6 of the short-stature homeobox-containing (SHOX) gene (NM000451). Associated diseases involving the SHOX gene range from severe Leri-Weill dyschondrosteosis to mild nonspecific short stature. Meanwhile, further validation using a quantitative reverse transcription polymerase chain reaction assay confirmed the heterozygous deletion of the SHOX gene in the proband, as well as other family members with similar clinical characteristics (the proband's mother, aunt, and cousin). Multiple pathogenic reports of this variant have been included in the HGMD database. Per the American College of Medical Genetics and Genomics (ACMG) classification criteria, this deletion is classified as pathogenic. (2) For the male patient, a heterozygous variant was detected in the CRYBB3 gene: NM004076: c.226G>A (p.Gly76R). Variants in the CRYBB3 gene can cause Cataract 22 (OMIM: 609741). At present, this variant locus is not included in databases such as the gnomAD, while both SIFT and PolyPhen2 deem this locus 'damaging'. Moreover, further validation by Sanger sequencing confirmed that the variant was inherited from the male patient's mother, who also had cataracts. According to ACMG standards and guidelines, the c.226G>A (p.Gly76Arg) variant in the CRYBB3 gene is classified as having 'uncertain significance'. Conclusion WES identified pathogenic variants in both individuals, suggesting a 25% chance of a healthy child naturally. Third-generation assisted reproductive techniques are recommended to minimize the risk of affected offspring.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Genetics and Prenatal Diagnosis, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | | | | | | | | | | |
Collapse
|
2
|
Srivastava P, Tyagi A, Bhardwaj C, Kumari A, Kaur H, Seth S, Kaur A, Panigrahi I, Dayal D, Pramanik S, Mandal K. SHOX Variations in Idiopathic Short Stature in North India and a Review of Cases from Asian Countries. J Clin Res Pediatr Endocrinol 2024; 16:41-49. [PMID: 37750395 PMCID: PMC10938528 DOI: 10.4274/jcrpe.galenos.2023.2023-3-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
Objective Short stature homeobox (SHOX) haploinsufficiency underlies idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis. The worldwide prevalence of SHOX variations in ISS varies from 2.5% to 15.0%. The aim of this study was to assess the implication of SHOX variation in ISS in North Indians and compare this with other cases of SHOX variations from Asian population. Methods SHOX gene analysis was carried out by multiplex ligation-dependent probe amplification followed by Sanger sequencing in 54 patients with variable phenotypes. Comparison with other reports in a meta-analysis comprising the current study and 11 previous studies (n=979) was performed. Results SHOX analysis resulted in 12.9% positivity (7.4% deletions and 5.5% duplications). SHOX association was seen significantly related to gender, with predominance in females (p=0.047). Short arms and forearms were the only significantly associated trait seen in 51.9% of children. The overall prevalence of SHOX variation was 15.2% in Asians with ISS. No significant difference was found in geographical region-specific analysis. Conclusion This study summarises findings from the last decade and provides an updated picture of the prevalence of SHOX variations in Asians, emphasizing their potential as therapeutic targets in ISS patients. Further high quality, large investigations including functional validation is warranted to validate this association.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Ankita Tyagi
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Chitra Bhardwaj
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Anu Kumari
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Harvinder Kaur
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Child Growth and Anthropology Unit, Chandigarh, India
| | - Saurabh Seth
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Anupriya Kaur
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Inusha Panigrahi
- Advanced Pediatrics Centre (APC), Postgraduate Institute of Medical Education & Research (PGIMER), Genetic Metabolic Unit, Chandigarh, India
| | - Devi Dayal
- Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research (PGIMER), Pediatric Endocrinology Unit, Chandigarh, India
| | | | - Kausik Mandal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Department of Medical Genetics, Lucknow, India
| |
Collapse
|
3
|
Cai M, Chen X, Li Y, Lin N, Huang H, Xu L. Genetic analysis, ultrasound phenotype, and pregnancy outcomes of fetuses with Xp22.33 or Yp11.32 microdeletions. J Perinat Med 2024; 52:96-101. [PMID: 37846158 DOI: 10.1515/jpm-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES The phenotypes of Xp22.33 or Yp11.32 microdeletions comprising the short-stature homeobox (SHOX) gene have been extensively described in adults and children. Herein, the prenatal ultrasound phenotype and pregnancy outcomes of fetuses with Xp22.33/Yp11.32 microdeletions were analyzed to improve our understanding, diagnosis, and monitoring of this genetic condition in the fetal stage. METHODS A total of 9,100 pregnant women referred to tertiary units for prenatal diagnosis were evaluated by chromosomal microarray analysis(CMA). RESULTS Seven (0.08 %) fetuses had Xp22.33/Yp11.32 microdeletions, ranging from 243 kb to 1.1 Mb, that comprised SHOX. The ultrasonic phenotypes differed among these fetuses, with three fetuses presenting abnormal bone development, one had labial-palatal deformity and strawberry head, two had an abnormal ultrasonic soft marker, and one had no abnormalities. After genetic counseling, only one couple underwent pedigree assessment, which confirmed the paternal origin of the microdeletion. This infant presented delayed speech development, whereas other three infants showed a typical postnatal development. In three cases, the parents chose to terminate the pregnancy. CONCLUSIONS The ultrasonic phenotype of fetuses with Xp22.33/Yp11.32 microdeletions resulting in SHOX heterozygosity loss is variable. Prenatal CMA can quickly and effectively diagnose Xp22.33/Yp11.32 microdeletions and SHOX loss, which may help prenatal counseling.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| |
Collapse
|
4
|
Liu L, Li J, Li J, Hu H, Liu J, Tang P. Novel heterozygous mutation in the SHOX gene leading to familial idiopathic short stature: A case report and literature review. Medicine (Baltimore) 2023; 102:e35471. [PMID: 37832088 PMCID: PMC10578768 DOI: 10.1097/md.0000000000035471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The pathogenic mutation of short stature homeobox (SHOX) gene is one of the main genetic causes of short stature in children, with an incidence rate of 1/1000~1/2000 and the main clinical manifestations are short stature and (or) limb skeletal abnormalities. SHOX gene mutations are mostly large deletions of regulatory sequence genes, while exon mutations are relatively rare. The pathogenic rate of mutations occurring in exon 5 is only 1/50 000~1/100 000. This study reviewed the clinical data of a child with SHOX gene mutation in exon 5, and analyzed the clinical phenotype, pathogenesis, diagnosis, treatment and prognosis of SHOX gene mutation in combination with relevant literature at home and abroad. CASE PRESENTATION The patient was an 8-year-old girl with a height of 105.2 cm (-4.31 standard deviations). Her sitting height/height ratio was 56.8% (>55.5%), and she exhibited high-arched palate, irregular dentition, micrognathia, short fingers, and a normal growth hormone stimulation test. Whole-exome sequencing was performed, and Sanger sequencing was used for site validation. The sequencing results revealed a heterozygous mutation of c.577G > A in exon 5 of the SHOX gene, inherited from the father. The clinical symptoms of the proband were consistent with the phenotype of short stature idiopathic familial associated with SHOX gene mutations. The father, grandfather, uncle, and sister of the proband all had the c.577G > A heterozygous mutation. Therefore, the clinical diagnosis was childhood short stature caused by SHOX gene defects. The SHOX: c.577G > A mutation is likely to be the genetic etiology of familial idiopathic short stature in this family, and this novel mutation enriches the mutation spectrum of the SHOX gene. CONCLUSION This is the first case report of familial idiopathic dwarfism caused by mutation at the c.577G > A locus of exon 5 of SHOX gene in the world. This novel mutation enriches the mutation spectrum of the SHOX gene. It is important to emphasize genetic testing, including the SHOX gene, in patients with familial idiopathic short stature and to provide timely growth hormone therapy to individuals with short stature caused by SHOX gene mutations in order to improve their adult height.
Collapse
Affiliation(s)
- Lifang Liu
- Lishui Maternal and Child Health Hospital, Lishui, Zhejiang, China
| | - Junsheng Li
- Lishui Maternal and Child Health Hospital, Lishui, Zhejiang, China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hu
- Lishui Maternal and Child Health Hospital, Lishui, Zhejiang, China
| | - Jiao Liu
- Lishui Maternal and Child Health Hospital, Lishui, Zhejiang, China
| | - Ping Tang
- Jiaxing Maternity and Children Health Care Hospital/The Affiliated Women and Children’s Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
5
|
Ungureanu MC, Hrisca A, Caba L, Teodoriu L, Bilha S, Preda C, Leustean L. SHOX Deletion and Idiopathic Short Stature: What Does the Clinician Need to Know? Case Series Report. Diagnostics (Basel) 2022; 13:diagnostics13010105. [PMID: 36611397 PMCID: PMC9818503 DOI: 10.3390/diagnostics13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Children diagnosticated with idiopathic short stature (ISS) are probably, in most cases, underdiagnosticated. The genetic causes of ISS may be mutations of genes involved in local regulation of the growth plate or genes involved in the GH-IGF1 axis physiology. We present a kindred of five children evaluated for short stature or low normal stature, initially diagnosticated as idiopathic short stature, familial short stature, or being small for gestational age. Clinical signs suggestive of SHOX deletion screening in a child with short stature are low arm span/height ratio, increased sitting height/height ratio, BMI > 50% percentile, Madelung deformity, cubitus valgus, bowing and shortening of the forearm, dislocation of the ulna (at the elbow), and the appearance of muscular hypertrophy. Radiological characteristics suggestive of SHOX deficiency are triangularisation of the distal radial epiphysis, an enlarged diaphysis of the radius plus bowing of the radius, the convexity of the distal radial metaphysis, short fourth and fifth metacarpals, pyramidalization of the carpal row. Treatment with rGH is approved for children with SHOX gene deficiency and short stature. This kindred is an example that familial short stature, idiopathic short stature, and short stature due to a small gestational age are not final diagnoses. Complex investigations are necessary to identify the precise cause, leading to optimal clinical management. Treatment with rGH is an option for some of them; for others, it has no therapeutic response and, in some cases, is even harmful.
Collapse
Affiliation(s)
- Maria-Christina Ungureanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Anamaria Hrisca
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
- Correspondence:
| | - Lavinia Caba
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Laura Teodoriu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Stefana Bilha
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Cristina Preda
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Letitia Leustean
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| |
Collapse
|
6
|
Benign paroxysmal positional vertigo in a patient with persistent hypoglossal artery and bilateral madelung deformity. IBRO Neurosci Rep 2022; 14:77-79. [PMID: 36618578 PMCID: PMC9813689 DOI: 10.1016/j.ibneur.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
We explore a case of Benign Paroxysmal Positional Vertigo in the context of Persistent Hypoglossal Artery (PHA) and bilateral Madelung Deformity (MD). PHA is associated with a raft of major adverse cardiovascular events. MD can result from manifold conditions such as Turner's Syndrome and mesomelic dwarfism. In this case, the patient's positive family history of MD across generations is suggestive of inherited mutation in the Short Stature Homeobox (SHOX) Gene. We discuss the putative impact of SHOX on the genesis of Benign Paroxysmal Positional Vertigo (BPPV) in a patient with PHA and bilateral MD.
Collapse
|
7
|
Correlation Study between Levels of Gastrin, Serum IGF-1, and GHBP and Growth and Development in Children with Short Stature Based on Big Data Analysis. DISEASE MARKERS 2022; 2022:4614099. [PMID: 36061351 PMCID: PMC9436603 DOI: 10.1155/2022/4614099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Objective To analyze the correlation between the levels of gastrin, serum IGF-1, and GHBP and growth and development in children with short stature (SS) using the big data. Methods By means of retrospective analysis, the clinical data of 42 children with SS admitted to our hospital from October 2020 to October 2021 were selected as the study group, while 30 children with the healthy physical examination results in the corresponding period were selected as the control group to measure the growth and development indices and the levels of gastrin, serum IGF-1, and GHBP. The Pearson correlation analysis was used for the relationship between the levels of gastrin, serum IGF-1, and GHBP and growth and development indices in children with SS, and the targeted intervention measures were formulated by the analysis of experimental data. Results Compared with the study group, the height, weight, and bone mineral density (BMD) Z-scores of children in the control group were obviously higher (P < 0.001). The levels of gastrin, serum IGF-1, and GHBP in the study group were markedly lower than those in the control group (P < 0.05). The Pearson correlation analysis showed that the gastrin, serum IGF-1, and GHBP of children were positively correlated with growth and development indices (P < 0.001). The levels of gastrin, serum IGF-1, and GHBP in children were distinctly improved after treatment (P < 0.05). Conclusion The gastrin, serum IGF-1, and GHBP are closely related to the SS, and the effective clinical intervention can better improve the above indicators of children to promote their growth and development.
Collapse
|
8
|
Pasińska M, Łazarczyk E, Repczyńska A, Sobczyńska-Tomaszewska A, Zimowski J, Runge A, Haus O. Clinical Importance of aCGH in Genetic Counselling of Children with Psychomotor Retardation. Appl Clin Genet 2022; 15:27-38. [PMID: 35603035 PMCID: PMC9116409 DOI: 10.2147/tacg.s357136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The X and Y chromosomes are responsible for the determination and differentiation of the gonads, and their numerical and structural abnormalities may cause the abnormal development of secondary sex characteristics. The presence of abnormalities concerning X chromosome can also contribute to many genetically heterogeneous diseases associated with cognitive impairment and intellectual disability. Purpose This study shows the effect of aberrations of the maternal X chromosome on the abnormal development of the child. Patients and Methods Ten women aged 26 to 40 years were consulted in genetic counselling clinic and subsequently subjected to cytogenetic and molecular tests due to abnormal psychomotor development of their children, in whom structural aberrations of the X chromosome had been detected. Results Two women were diagnosed with changes in karyotype: 46,X,der(X)t(X;Y)(p22.3;q11.2) in one and 46,X,inv(X)(p21.2q13). Five women were diagnosed with microduplications in the short arm of the X chromosome; dupXp22.31 in one, and in four women dupXp22.33. The remaining three women were diagnosed with duplication in the long arm of the X chromosome; dupXq25 in one and dupXq26.3 in two women. Conclusion Genetic analysis of the X chromosome, based on cytogenetic and molecular methods of the highest available resolution, is extremely important in women with reproductive failure. These methods allow establishing accurately the breakpoints and rearrangements in chromosomes, and assessment of the copy number variation (CNV) can explain phenotypic variability with apparently similar aberrations. A more precise characterization of the alterations is necessary for the correct genetic diagnosis, as well as determination of the carrier status and genetic risk in family members.
Collapse
Affiliation(s)
- Magdalena Pasińska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ewelina Łazarczyk
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Anna Repczyńska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Janusz Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Agata Runge
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
9
|
Spurna Z, Capkova P, Srovnal J, Duchoslavova J, Punova L, Aleksijevic D, Vrtel R. Clinical impact of variants in non-coding regions of SHOX - Current knowledge. Gene 2022; 818:146238. [PMID: 35074420 DOI: 10.1016/j.gene.2022.146238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/21/2023]
Abstract
The short stature homeobox-containing (SHOX) is the most frequently analysed gene in patients classified as short stature patients (ISS) or diagnosed with Leri-Weill dyschondrosteosis (LWD), Langer mesomelic dysplasia (LMD), or Madelung deformity (MD). However, clinical testing of this gene focuses primarily on single nucleotide variants (SNV) in its coding sequences and copy number variants (CNV) overlapping SHOX gene. This review summarizes the clinical impact of variants in noncoding regions of SHOX. RECENT FINDINGS: CNV extending exclusively into the regulatory elements (i.e., not interrupting the coding sequence) are found more frequently in downstream regulatory elements of SHOX. Further, duplications are more frequent than deletions. Interestingly, downstream duplications are more common than deletions in patients with ISS or LWD but no such differences exist for upstream CNV. Moreover, the presence of specific CNVs in the patient population suggests the involvement of additional unknown factors. Some of its intronic variants, notably NM_000451.3(SHOX):c.-9delG and c.-65C>A in the 5'UTR, have unclear clinical roles. However, these intronic SNV may increase the probability that other CNV will arise de novo in the SHOX gene based on homologous recombination or incorrect splicing of mRNA. SUMMARY: This review highlights the clinical impact of noncoding changes in the SHOX gene and the need to apply new technologies and genotype-phenotype correlation in their analysis.
Collapse
Affiliation(s)
- Zuzana Spurna
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Josef Srovnal
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jana Duchoslavova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lucia Punova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Darina Aleksijevic
- Department of Paediatrics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Radek Vrtel
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|