1
|
Chen H, Chen G, Li F, Huang Y, Zhu L, Zhao Y, Jiang Z, Yan X, Yu L. Application and insights of targeted next-generation sequencing in a large cohort of 46,XY disorders of sex development in Chinese. Biol Sex Differ 2024; 15:73. [PMID: 39285472 PMCID: PMC11403886 DOI: 10.1186/s13293-024-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE 46,XY disorders of sex development (46,XY DSD) are characterized by incomplete masculinization of genitalia with reduced androgenization. Accurate clinical management remains challenging, especially based solely on physical examination. Targeted next-generation sequencing (NGS) with known pathogenic genes provides a powerful tool for diagnosis efficiency. This study aims to identify the prevalent genetic variants by targeted NGS technology and investigate the diagnostic rate in a large cohort of 46,XY DSD patients, with most of them presenting atypical phenotypes. METHODS Two different DSD panels were developed for sequencing purposes, targeting a cohort of 402 patients diagnosed with 46,XY DSD, who were recruited from the Department of Urology at Children's Hospital, Zhejiang University School of Medicine (Hangzhou, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for targeted panels to find the patients' variants. The clinical significance of these variants was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS A total of 108 variants across 42 genes were found in 107 patients, including 46 pathogenic or likely pathogenic variants, with 45.7%(21/46) being novel. Among these genes, SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7 were the most frequently observed. Besides, we also detected some uncommon causative genes like SOS1, and GNAS. Oligogenic variants were also identified in 9 patients, including several combinations PROKR2/FGFR1/CYP11B1, PROKR2/ATRX, PROKR2/AR, FGFR1/LHCGR/POR, FGFR1/NR5A1, GATA4/NR5A1, WNT4/AR, MAP3K1/FOXL2, WNT4/AR, and SOS1/FOXL2. CONCLUSION The overall genetic diagnostic rate was 11.2%(45/402), with an additional 15.4% (62/402) having variants of uncertain significance. Additionally, trio/duo patients had a higher genetic diagnostic rate (13.4%) compared to singletons (8.6%), with a higher proportion of singletons (15.1%) presenting variants of uncertain significance. In conclusion, targeted gene panels identified pathogenic variants in a Chinese 46,XY DSD cohort, expanding the genetic understanding and providing evidence for known pathogenic genes' involvement.
Collapse
Affiliation(s)
- Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Guangjie Chen
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yong Huang
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Linfeng Zhu
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yijun Zhao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Ziyi Jiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xiang Yan
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Kouri C, Sommer G, Martinez de Lapiscina I, Elzenaty RN, Tack LJW, Cools M, Ahmed SF, Flück CE. Clinical and genetic characteristics of a large international cohort of individuals with rare NR5A1/SF-1 variants of sex development. EBioMedicine 2024; 99:104941. [PMID: 38168586 PMCID: PMC10797150 DOI: 10.1016/j.ebiom.2023.104941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Steroidogenic factor 1 (SF-1/NR5A1) is essential for human sex development. Heterozygous NR5A1/SF-1 variants manifest with a broad range of phenotypes of differences of sex development (DSD), which remain unexplained. METHODS We conducted a retrospective analysis on the so far largest international cohort of individuals with NR5A1/SF-1 variants, identified through the I-DSD registry and a research network. FINDINGS Among 197 individuals with NR5A1/SF-1 variants, we confirmed diverse phenotypes. Over 70% of 46, XY individuals had a severe DSD phenotype, while 90% of 46, XX individuals had female-typical sex development. Close to 100 different novel and known NR5A1/SF-1 variants were identified, without specific hot spots. Additionally, likely disease-associated variants in other genes were reported in 32 individuals out of 128 tested (25%), particularly in those with severe or opposite sex DSD phenotypes. Interestingly, 48% of these variants were found in known DSD or SF-1 interacting genes, but no frequent gene-clusters were identified. Sex registration at birth varied, with <10% undergoing reassignment. Gonadectomy was performed in 30% and genital surgery in 58%. Associated organ anomalies were observed in 27% of individuals with a DSD, mainly concerning the spleen. Intrafamilial phenotypes also varied considerably. INTERPRETATION The observed phenotypic variability in individuals and families with NR5A1/SF-1 variants is large and remains unpredictable. It may often not be solely explained by the monogenic pathogenicity of the NR5A1/SF-1 variants but is likely influenced by additional genetic variants and as-yet-unknown factors. FUNDING Swiss National Science Foundation (320030-197725) and Boveri Foundation Zürich, Switzerland.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Institute of Social and Preventive Medicine, University of Bern, Switzerland, University of Bern, Bern 3012, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Research into the Genetics and Control of Diabetes and Other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain; Endo-ERN, Amsterdam 1081 HV, the Netherlands
| | - Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Lloyd J W Tack
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Martine Cools
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Sick Children, Glasgow G51 4TF, UK
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|