Shormanov VK, Chernova AP, Elizarova MK. [Study of the stability of 2-methoxy-4-(2-propenyl) hydroxybenzene in biological material].
Sud Med Ekspert 2022;
65:33-38. [PMID:
35613445 DOI:
10.17116/sudmed20226503133]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this work is to study the stability of 2-methoxy-4-(2-propenyl)hydroxybenzene [2-MO-4-(2-P)HOB] in biological material. For analysis, gas chromatography-mass spectrometry (GC-MS) was used: column DB-5MS EVIDEX (25 m × 0.2 mm) with a stationary phase of 5%-phenyl-95%-dimethylpolysiloxane; thin layer chromatography (TLC): Sorbfil plates, hexane-dioxane-propanol-2 mobile phase (40:5:1) and UV spectrophotometry (solvent - 95% ethanol). 2-MO-4-(2-P)HOB was isolated from the biomatrix (liver tissue) by infusion with a mixture of ethyl acetate-acetone (7:3). Purification of the analyte was carried out by combining extraction (water-ethyl acetate system) and semi-preparative column chromatography [sorbent - silica gel L 40/100 μm, eluent - hexane-dioxane (8.5:1.5)]. It was established that at -22 °C, 4 °C, 12 °C, 20 °C and 30 °C 2-MO-4-(2-P)HOB is stored in the liver tissue for 385, 357, 301, 245 and 217 days, respectively. We studied the possibility of mathematical description of the dynamics of analyte decomposition in a biomaterial (liver tissue) at the indicated temperatures using the hyperbolic equation. The coefficients in the hyperbola equation (kav), calculated according to the results of the experiment, for temperatures of -22 °C, 4 °C, 12 °C, 20 °C and 30 °C amounted to 6223, 3036, 2387, 1903 and 932, respectively., which is described by the equation: kav=101.19∙(50-to)-1272.78. It was established that on the basis of this equation it is possible to predict the nature of the stability of 2-MO-4-(2-P)HOB in the biomaterial (liver tissue) at temperatures in the range from -22 °C to 30 °C.
Collapse