1
|
Nikiforov VS, Kotikova AI, Blinova EA, Akleyev AV. Transcriptional Activity of Genes Regulating T-Helper Differentiation in the Accidentally Exposed Population of the Southern Urals. DOKL BIOCHEM BIOPHYS 2024; 519:499-505. [PMID: 39283554 DOI: 10.1134/s1607672924701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 01/19/2025]
Abstract
The objective of this work was to study the expression of the TBX21, RORC, GATA3, NFKB1, MAPK8, and STAT3 genes responsible for the regulation of the differentiation of various T-helper subpopulations in individuals chronically exposed to radiation. The object of the study was peripheral blood cells obtained from 120 persons chronically exposed to radiation in a wide range of doses on the Techa River. The mean cumulative absorbed dose to red bone marrow in the examined exposed individuals was 742.7 ± 78.6 mGy (dose range, 73.5-3516.1 mGy); in the comparison group, 17.4 ± 2.2 mGy (dose range, 0.0-55.5 mGy). The subpopulation composition of T-helpers (Th1, Th2, and Th17) was analyzed by flow cytofluorometry. The relative mRNA content of the TBX21, RORC, GATA3, NFKB1, MAPK8, and STAT3 genes was estimated by real-time PCR. The study made it possible to note a decrease in the relative number of T-helpers 2 in the populations of T-helpers of the central memory in the group of chronically exposed persons compared to the comparison group. In the population of T-helpers of the central memory, a statistically significant increase in the relative number of T-helpers 1 was shown, depending on the accumulated absorbed dose to red bone marrow. No changes in mRNA expression of the studied genes were observed. The analysis of the correlation between the expression of GATA3, MAPK8, STAT3, RORC, and TBX21 mRNA and the relative number of cells in subpopulations of T-helper types 1, 2, and 17 in the examined people did not reveal statistically significant patterns.
Collapse
Affiliation(s)
- V S Nikiforov
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia.
- Chelyabinsk State University, Chelyabinsk, Russia.
| | - A I Kotikova
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | - E A Blinova
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | - A V Akleyev
- Urals Research Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
2
|
Hurem S, Martín LM, Brede DA, Skjerve E, Nourizadeh-Lillabadi R, Lind OC, Christensen T, Berg V, Teien HC, Salbu B, Oughton DH, Aleström P, Lyche JL. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PLoS One 2017; 12:e0179259. [PMID: 28628668 PMCID: PMC5476279 DOI: 10.1371/journal.pone.0179259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2-10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.
Collapse
Affiliation(s)
- Selma Hurem
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Leonardo Martín Martín
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
- University of Camagüey Ignacio Agramonte y Loynaz (UC), Faculty of Agropecuary Sciences, Camagüey, Cuba
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Eystein Skjerve
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Terje Christensen
- Norwegian Radiation Protection Authority (NRPA), CERAD CoE, Østerås, Norway
| | - Vidar Berg
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Deborah Helen Oughton
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| |
Collapse
|