1
|
Guo X, Lou J, Wang F, Fan D, Qin Z. Recent Advances in Nano-Therapeutic Strategies for Osteoarthritis. Front Pharmacol 2022; 13:924387. [PMID: 35800449 PMCID: PMC9253376 DOI: 10.3389/fphar.2022.924387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and the leading cause of disability globally. It tends to occur in middle age or due to an injury or obesity. OA occurs with the onset of symptoms, including joint swelling, joint effusion, and limited movement at a late stage of the disease, which leads to teratogenesis and loss of joint function. During the pathogenesis of this degenerative joint lesion, several local inflammatory responses are activated, resulting in synovial proliferation and pannus formation that facilitates the destruction of the bone and the articular cartilage. The commonly used drugs for the clinical diagnosis and treatment of OA have limitations such as low bioavailability, short half-life, poor targeting, and high systemic toxicity. With the application of nanomaterials and intelligent nanomedicines, novel nanotherapeutic strategies have shown more specific targeting, prolonged half-life, refined bioavailability, and reduced systemic toxicity, compared to the existing medications. In this review, we summarized the recent advancements in new nanotherapeutic strategies for OA and provided suggestions for improving the treatment of OA.
Collapse
Affiliation(s)
- Xinjing Guo
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jia Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| |
Collapse
|
2
|
Advanced Therapy Medicinal Products for the Eye: Definitions and Regulatory Framework. Pharmaceutics 2021; 13:pharmaceutics13030347. [PMID: 33800934 PMCID: PMC8000705 DOI: 10.3390/pharmaceutics13030347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products for human use that comprises somatic cell therapy medicinal products, tissue engineered products, gene therapy medicinal products, and the so-called combined ATMPs that consist of one of the previous three categories combined with one or more medical devices. During the last few years, the development of ATMPs for the treatment of eye diseases has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that today have no cure or are just subjected to symptomatic treatments. Therefore, it is important for all professionals working in this field to be familiar with the regulatory principles associated with these types of innovative products. In this review, we outline the legal framework that regulates the development of ATMPs in the European Union and other international jurisdictions, and the criteria that each type of ATMP must meet to be classified as such. To illustrate each legal definition, ATMPs that have already completed the research and development stages and that are currently used for the treatment of eye diseases are presented as examples.
Collapse
|
3
|
Chang MC, Chiang PF, Kuo YJ, Peng CL, Chen KY, Chiang YC. Hyaluronan-Loaded Liposomal Dexamethasone-Diclofenac Nanoparticles for Local Osteoarthritis Treatment. Int J Mol Sci 2021; 22:ijms22020665. [PMID: 33440880 PMCID: PMC7826786 DOI: 10.3390/ijms22020665] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) remains one of the common degenerative joint diseases and a major cause of pain and disability in older adult individuals. Oral administration of non-steroidal anti-inflammatory drugs (NSAIDs) (such as diclofenac, DIC) or intra-articular injected gluco-corticosteroids (such as dexamethasone, DEX) were the conventional treatment strategies for OA to reduce joint pain. Current limitations for both drugs including severe adverse effects with risks of toxicity were noted. The aim of the present study was to generate a novel OA treatment formulation hyaluronic acid (HA)-Liposomal (Lipo)-DIC/DEX to combat joint pain. The formulation was prepared by constructing DIC with DEX-loaded nanostructured lipid carriers Lipo-DIC/DEX mixed with hyaluronic acid (HA) for prolonged OA application. The prepared Lipo-DIC/DEX nanoparticles revealed the size as 103.6 ± 0.3 nm on average, zeta potential as −22.3 ± 4.6 mV, the entrapment efficiency of 90.5 ± 5.6%, and the DIC and DEX content was 22.5 ± 4.1 and 2.5 ± 0.6%, respectively. Evidence indicated that HA-Lipo-DIC/DEX could reach the effective working concentration in 4 h and sustained the drug-releasing time for at least 168 h. No significant toxicities but increased cell numbers were observed when HA-Lipo-DIC/DEX co-cultured with articular chondrocytes cells. Using live-animal In vivo imaging system (IVIS), intra-articular injection of each HA-Lipo-DIC/DEX sufficed to reduce knee joint inflammation in OA mice over a time span of four weeks. Single-dose injection could reduce the inflammation volume down to 77.5 ± 5.1% from initial over that time span. Our results provided the novel drug-releasing formulation with safety and efficiency which could be a promising system for osteoarthritis pain control.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Ping-Fang Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Yu-Jen Kuo
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Kuan-Yin Chen
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan; (M.-C.C.); (P.-F.C.); (Y.-J.K.); (C.-L.P.); (K.-Y.C.)
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, Medicine College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71842); Fax: +886-2-23114965
| |
Collapse
|
4
|
Chang MC, Kuo YJ, Hung KH, Peng CL, Chen KY, Yeh LK. Liposomal dexamethasone-moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. ACTA ACUST UNITED AC 2020; 15:055022. [PMID: 32434164 DOI: 10.1088/1748-605x/ab9510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infectious keratitis is still one of the major causes of visual impairment and blindness, often affecting developing countries. Eye-drop therapy to reduce disease progression is the first line of treatment for infectious keratitis. The current limitations in controlling ophthalmic infections include rapid precorneal drug loss and the inability to provide long-term extraocular drug delivery. The aim of the present study was to develop a novel ophthalmic formulation to treat corneal infection. The formulation was prepared by constructing moxifloxacin (MFX) and dexamethasone (DEX)-loaded nanostructured lipid carriers (Lipo-MFX/DEX) mixed with a collagen/gelatin/alginate (CGA) biodegradable material (CGA-Lipo-MFX/DEX) for prolonged ocular application. The characteristics of the prepared Lipo-MFX/DEX nanoparticles were as follows: average size, 132.1 ± 73.58 nm; zeta potential, -6.27 ± 4.95 mV; entrapment efficiency, 91.5 ± 3.5%; drug content, 18.1 ± 1.7%. Our results indicated that CGA-Lipo-MFX/DEX could release an effective working concentration in 60 min and sustain the drug release for at least 12 h. CGA-Lipo-MFX/DEX did not produce significant toxicities, but it increased cell numbers when co-cultured with ocular epithelial cells. An animal study also confirmed that CGA-Lipo-MFX/DEX could inhibit pathogen microorganism growth and improve corneal wound healing. Our results suggest that CGA-Lipo-MFX/DEX could be a useful anti-inflammatory formulation for ophthalmological disease treatment.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan
| | | | | | | | | | | |
Collapse
|
5
|
Sánchez-Santos I, García-Sánchez GA, Gonzalez-Salinas R, Linares-Alba MA, Rodríguez-Reyes AA, García-Santisteban R, Tirado-González V, Hernández-Piñamora E, García-Arzate D, Morales-Cantón V, Quiroz-Mercado H. Intravitreal bromfenac liposomal suspension (100 μg / 0.1 ml). A safety study in rabbit eyes. Exp Eye Res 2020; 194:108020. [PMID: 32209318 DOI: 10.1016/j.exer.2020.108020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is a need to find alternative treatments for MEe. Bromfenac has shown promise in inhibiting the COX-2 enzymatic pathway that partially causes the inflammatory cascade which contributes to the precipitation of ME. However, like other NSAID's, its intraocular half-life is limited. We hypothesize that a delayed-release liposome formulation containing bromfenac might provide a similar anti-inflammatory effect as long-lasting steroid release systems without the well-known steroidal side-effects. We introduced a novel formulation with these characteristics into the vitreous cavity of rabbit eyes in order to evaluate its safety profile. MATERIAL AND METHODS 10 left eyes of rabbits were injected with the liposome-encapsulated bromfenac suspension (100 μg/0.1 ml). Basal ERG's were recorded. Total follow-up time was 3 months, at which point ERG's were repeated and eyes were enucleated for histopathological study. Total amplitude and implicit times were recorded. A difference of 25% in either recording was considered significant. Significance was assessed using the paired-t test and Wilcoxon matched-pairs signed-rank test. A p-value of <0.05 was considered significant. RESULTS No significant changes were recorded in ERG measurements after 3 months when compared to basal measurements. Histopathological analysis of retinal specimens found no traces of liposome-induced toxicity. CONCLUSION The liposome-encapsulated bromfenac suspension (100 μg/0.1 ml) is not toxic and has been proven safe to use in an animal model. Therefore, this formulation shows promise as a possible future alternative treatment for ME and should be further studied to show its biological effect and efficacy.
Collapse
Affiliation(s)
- Idaira Sánchez-Santos
- Retina Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico.
| | - Gustavo A García-Sánchez
- Santgar Laboratory, México's master formulas SA, Augusto Rodin 35, Ampliación Nápoles, 03840, CDMX, Mexico
| | - Roberto Gonzalez-Salinas
- Retina Research Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | | | - Abelardo A Rodríguez-Reyes
- Ophthalmic Pathology Service, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | - Rodrigo García-Santisteban
- Retina Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | - Vanessa Tirado-González
- Retina Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | - Elsa Hernández-Piñamora
- Retina Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | - Daniel García-Arzate
- Retina Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | - Virgilio Morales-Cantón
- Retina Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| | - Hugo Quiroz-Mercado
- Retina Research Department, Asociación para evitar la Ceguera en México, Hospital ''Dr. Luis Sánchez Bulnes", Vicente García Torres 46, Barrio San lucas, 04030, Coyoacán, CDMX, Mexico
| |
Collapse
|