1
|
Gharbavi M, Mousavi M, Pour-Karim M, Tavakolizadeh M, Sharafi A. Biogenic and facile synthesis of selenium nanoparticles using Vaccinium arctostaphylos L. fruit extract and anticancer activity against in vitro model of breast cancer. Cell Biol Int 2022; 46:1612-1624. [PMID: 35819083 DOI: 10.1002/cbin.11852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Biogenic synthesis of selenium nanoparticles (SeNPs) using plant extracts has emerged as a promising alternative approach to traditional chemical synthesis. The current study aims to introduce a safe, low-cost, and green synthesis of SeNPs using fresh fruit extract of Vaccinium arctostaphylos L. The biogenic synthesis of SeNPs was confirmed by different analyses including ultraviolet-visible spectrophotometry, Fourier transform infrared, and energy-dispersive X-ray. Also, the crystalline nature, size, and morphology of the obtained SeNPs were characterized by X-ray diffraction, dynamic light scattering, field emission scanning electron microscopy, and transmission electron microscopy techniques. The SeNPs were successfully synthesized with fruit extract of V. arctostaphylos L. in a regular spherical form and narrow size distribution with suitable zeta-potential values and exhibited appropriate biocompatibility. It revealed that the synthesized SeNPs can significantly inhibit the growth of 4T1 breast cancer cells with an IC50 of ∼84.19 ± 25.96 µg/ml after 72 h treatment. Overall, it can be concluded that the green synthesized SeNPs can be attractive, nontoxic, and eco-friendly candidates for drug delivery or medicinal applications.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mousa Mousavi
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahsa Pour-Karim
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Tavakolizadeh
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Barut B, Baş H, Biyiklioğlu Z. Pyridine substituted BODIPYs: synthesis, characterization and cholinesterease, α-glucosidase inhibitory, DNA hydrolytic cleavage effects. Turk J Chem 2021; 45:1567-1575. [PMID: 34849067 PMCID: PMC8596534 DOI: 10.3906/kim-2105-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, the synthesis of new monostyryl (BDPY-2) and distyryl BODIPY dyes (BDPY-4, BDPY-5) containing pyridine groups has been reported for the first time. The acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase from equine serum (BuChE), α-glucosidase from Saccharomyces cerevisiae and DNA hydrolytic cleavage actions of BDPY-2, BDPY-4, BDPY-5 were investigated using various techniques. The results indicated that the compounds had varying inhibition properties against AChE, BuChE, and α-glucosidase. BDPY-4 was the most potent compound on AChE with IC50 of 54.78 ± 4.51 µM, and Lineweaver-Burk plots indicated that the compound is bound to a site other than the active site as a noncompetitive inhibitor. The compound-protein binding experiment showed that BDPY-4 changed the microenvironment around AChE. On the other hand, the compounds showed lower α-glucosidase inhibition than the positive control. The DNA hydrolytic cleavage effects were not observed on supercoiled plasmid DNA in the presence of the compounds as compared to negative controls. These findings suggested that BDPY-4 might be a promising compound to treat Alzheimer's diseases.
Collapse
Affiliation(s)
- Burak Barut
- Department of Biochemistry, Karadeniz Technical University, Trabzon Turkey
| | - Hüseyin Baş
- Department of Chemistry, Karadeniz Technical University, Trabzon Turkey
| | | |
Collapse
|
3
|
Kantekin H, Yalazan H, Barut B, Güngör Ö, Ünlüer D, Demirbaş Ü, Özel A, Durmuş M. Dual-purpose both peripheral and non-peripheral triazole substituted ZnII, MgII and PbII phthalocyanines: Synthesis, characterization, photophysicochemical and acetylcholinesterase inhibitory properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Günsel A, Kalkan F, Atmaca GY, Barut B, Bilgiçli AT, Pişkin H, Özel A, Erdoğmuş A, Yarasir MN. Synthesis of water‐soluble phthalocyanines containing 1‐methyl‐1
H
‐imidazole‐2‐thiol: Investigation of DNA nuclease, α‐glucosidase inhibitory, and photo‐physicochemical properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Armağan Günsel
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| | - Fatma Kalkan
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Ahmet T. Bilgiçli
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| | - Hasan Pişkin
- Department of Physics, Faculty of Arts and Sciences Boğaziçi University İstanbul Turkey
| | - Arzu Özel
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
- Drug and Pharmaceutical Technology Application and Research Center Karadeniz Technical University Trabzon Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey
| | - M. Nilüfer Yarasir
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| |
Collapse
|
5
|
Barut EN, Engin S, Saygın İ, Kaya-Yasar Y, Arici S, Sezen SF. Alpha-lipoic acid: A promising adjuvant for nonsteroidal anti-inflammatory drugs therapy with improved efficacy and gastroprotection. Drug Dev Res 2021; 82:844-851. [PMID: 33491260 DOI: 10.1002/ddr.21791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used in a wide variety of diseases due to their analgesic and anti-inflammatory effects, but their usage have been limited due to significant ulcerogenic side effects. In the present study, we aimed to evaluate the effect of α-lipoic acid (ALA) treatment on the anti-inflammatory activity of indomethacin (Indo) as well as the possible therapeutic effect of ALA on high dose Indo-induced gastropathy in female mice. Mice were treated with Indo (5 or 30 mg/kg, p.o) alone or in combination with ALA (50, 100 or 200 mg/kg, i.p). in vivo anti-inflammatory effect was evaluated by formalin-induced paw edema measured as paw thickness and edema. Gastric damage was evaluated macroscopically and histologically by scoring mucosal hemorrhage, erosion, edema and inflammation. To our results, Indo was ineffective at 5 mg/kg, but co-treatment with Indo and ALA significantly reduced paw edema, implying that ALA augmented the anti-inflammatory effect of subtherapeutic dose of Indo. However, ALA was not able to induce a further increase in the anti-inflammatory effect of Indo at 30 mg/kg. Unlike the treatment with Indo at 5 mg/kg, Indo at 30 mg/kg caused severe gastric damage that prevented by co-treatment with ALA. These results suggest that combination of ALA with NSAIDs can both increase anti-inflammatory effect and prevent NSAIDs-induced gastric damage. ALA would be promising adjuvant that can reduce dose for effective NSAID therapy, which improves safety profile of NSAIDs especially in cases long-term administration of high dose needed.
Collapse
Affiliation(s)
- Elif Nur Barut
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - Seçkin Engin
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Saygın
- Faculty of Medicine, Department of Pathology, Karadeniz Technical University, Trabzon, Turkey
| | - Yesim Kaya-Yasar
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Seyma Arici
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - Sena F Sezen
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Barut B, Keleş T, Biyiklioglu Z, Yalçın CÖ. Peripheral or nonperipheral tetra‐[4‐(9
H
‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese(III) phthalocyanines: Synthesis, acetylcholinesterase, butyrylcholinesterase, and α‐glucosidase inhibitory effects and anticancer activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Turgut Keleş
- Central Research Laboratory Application and Research Center Recep Tayyip Erdogan University Rize Turkey
| | - Zekeriya Biyiklioglu
- Faculty of Science, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Can Özgür Yalçın
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology Karadeniz Technical University Trabzon Turkey
- Drug and Pharmaceutical Technology Application and Research Center Karadeniz Technical University Trabzon Turkey
| |
Collapse
|
7
|
Şöhretoğlu D, Barut B, Sari S, Özel A, Arroo R. In vitro and in silico assessment of DNA interaction, topoisomerase I and II inhibition properties of chrysosplenetin. Int J Biol Macromol 2020; 163:1053-1059. [PMID: 32673727 DOI: 10.1016/j.ijbiomac.2020.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Chrysosplenetin is a methoxyflavone with reported anti-cancer effect. We tested its cytotoxic effect on the MCF-7 breast cancer cell line, and determined its effect on DNA intercalation and on the activity of topoisomerases I and II. The compound inhibited proliferation MCF-7 with an IC50 value of 0.29 μM. Chrysosplenetin did not initiate plasmid DNA cleavage but, in a concentration-dependent manner, protected plasmid DNA against damage induced by Fenton reagents. Furthermore, it possessed dual Topoisomerase I and II inhibitory properties. Especially, it inhibited topoisomerase II by 83-96% between the range 12.5-100 μM. In the light of these experimental findings, molecular docking studies were performed to understand binding mode, interactions and affinity of chrysosplenetin with DNA, and with topoisomerases I and II. These studies showed that of 4-chromone core and the hydroxyl and methoxy groups important for both intercalation with DNA and topoisomerase I and II inhibition.
Collapse
Affiliation(s)
- Didem Şöhretoğlu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Sıhhiye, Ankara, TR-06100 Ankara, Turkey.
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkey
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye, Ankara, TR-06100 Ankara, Turkey
| | - Arzu Özel
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkey; Karadeniz Technical University, Drug and Pharmaceutical Technology Application and Research Center, Trabzon, Turkey
| | - Randolph Arroo
- De Montfort University, Leicester School of Pharmacy, The Gateway, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
8
|
Synthesis, anti-cholinesterease, α-glucosidase inhibitory, antioxidant and DNA nuclease properties of non-peripheral triclosan substituted metal-free, copper(II), and nickel(II) phthalocyanines. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Ahmad A, Ullah F, Sadiq A, Ayaz M, Saeed Jan M, Shahid M, Wadood A, Mahmood F, Rashid U, Ullah R, Sahibzada MUK, Alqahtani AS, Mahmood HM. Comparative Cholinesterase, α-Glucosidase Inhibitory, Antioxidant, Molecular Docking, and Kinetic Studies on Potent Succinimide Derivatives. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2165-2178. [PMID: 32606589 PMCID: PMC7285812 DOI: 10.2147/dddt.s237420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/23/2020] [Indexed: 01/14/2023]
Abstract
Introduction The current study was designed to synthesize derivatives of succinimide and compare their biological potency in anticholinesterase, alpha-glucosidase inhibition, and antioxidant assays. Methods In this research, two succinimide derivatives including (S)-1-(2,5-dioxo-1-phenylpyrrolidin-3-yl) cyclohexanecarbaldehyde (Compound 1) and (R)-2-((S)-2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-phenylpropanal (Compound 2) were synthesized using Michael addition. Both the compounds, ie, 1 and 2 were evaluated for in-vitro acetylcholinesterase (AChE), butyrylctcholinesterase (BChE), antioxidant, and α-glucosidase inhibitory potentials. Furthermore, molecular docking was performed using Molecular Operating Environment (MOE) to explore the binding mode of both the compounds against different enzymes. Lineweaver-Burk plots of enzyme inhibitions representing the reciprocal of initial enzyme velocity versus the reciprocal of substrate concentration in the presence of synthesized compounds and standard drugs were constructed using Michaelis-Menten kinetics. Results In AChE inhibitory assay, compounds 1 and 2 exhibited IC50 of 343.45 and 422.98 µM, respectively, against AChE enzyme. Similarly, both the compounds showed IC50 of 276.86 and 357.91 µM, respectively, against BChE enzyme. Compounds 1 and 2 displayed IC50 of 157.71 and 471.79 µM against α-glucosidase enzyme, respectively. In a similar pattern, compound 1 exhibited to be more potent as compared to compound 2 in all the three antioxidant assays. Compound 1 exhibited IC50 values of 297.98, 332.94, and 825.92 µM against DPPH, ABTS, and H2O2 free radicals, respectively. Molecular docking showed a triple fold in the AChE and BChE activity for compound 1 compared with compound 2. The compound 1 revealed good interaction against both the AChE and BChE enzymes which revealed the high potency of this compound compared to compound 2. Conclusion Both succinimide derivatives exhibited considerable inhibitory activities against cholinesterases and α-glucosidase enzymes. Of these two, compound 1 revealed to be more potent against all the in-vitro targets which was supported by molecular docking with the lowest binding energies. Moreover, compound 1 also proved to have antiradical properties.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Fawad Mahmood
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, Medicinal, Aromatic and Poisonous Plants Research Center (MAPRC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Ali S Alqahtani
- Department of Pharmacognosy, Medicinal, Aromatic and Poisonous Plants Research Center (MAPRC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|