1
|
Gang R, Okello D, Kang Y. Medicinal plants used for cutaneous wound healing in Uganda; ethnomedicinal reports and pharmacological evidences. Heliyon 2024; 10:e29717. [PMID: 38694090 PMCID: PMC11058731 DOI: 10.1016/j.heliyon.2024.e29717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Background Wounds have become a major health challenge worldwide, presenting marked humanistic and economic burdens such as disabilities and death. Annually, approximately 14 million people suffer from wounds worldwide and 80 % of these occur in developing countries like Uganda. In Uganda, besides many cases of daily wound occurrences, approximately 10 % of surgical procedures become septic wounds and consequently lead to increased morbidity and mortality. Accordingly, several ethnomedicinal studies have identified plants used for wound treatment in different parts of Uganda and the wound healing activities of some plants have been reported. However, at present, these information remain largely separated without an all-inclusive repository containing ethnomedicinal and pharmacological information of the plants used for wound healing in Uganda, thus retarding appropriate evaluation. Therefore, this review focused on extensively exploring the plants used for treating cutaneous wounds in Uganda, along with associated ethnomedicinal information and their globally reported pharmacological potential. Methods Electronic data bases including Google Scholar, PubMed, and Science Direct were searched using key terms for required information contained in English peer reviewed articles, books, and dissertations. Additionally, correlations between selected parameters were determined with coefficient of determination (r2). Results The literature survey revealed that 165 species belonging to 62 families are traditionally used to treat wounds in Uganda. Most of the species belonged to families of Asteraceae (14 %), Fabaceae (10 %), and Euphorbiaceae (7 %). The commonest plant parts used for wound treatment include leaf (48 %), root (22 %), stembark (11 %), and stem (7 %), which are prepared majorly by poultice (34 %), decoction (13 %), as well as powdering (25 %). Fifty-four (33 %) of the plant species have been investigated for their wound healing activities whereas, one hundred eleven (67 %) have not been scientifically investigated for their wound healing effects. Pearson correlation coefficient between the number of wound healing plant families per part used and percent of each plant part used was 0.97, and between the number of wound healing plant families per method of preparation and percent of each method of preparation was 0.95, showing in both strong positively marked relationships. Conclusion The preliminarily investigated plants with positive wound healing properties require further evaluation to possible final phases, with comprehensive identification of constituent bioactive agents. Additionally, the wound healing potential of the scientifically uninvestigated plants with claimed healing effects needs examination. Subsequently, information regarding efficacy, safety, bioactive principles, and mechanism of action could prove valuable in future development of wound healing therapies.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, South Korea
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Denis Okello
- Department of Biological Sciences, Faculty of Sciences, Kabale University, P. O. Box 317, Kabale, Uganda
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, South Korea
| |
Collapse
|
2
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
3
|
Amnuaikit T, Rajagopal RS, Nilsuwan K, Benjakul S. Enhancement of Physical Appearance, Skin Permeation, and Odor Reduction Using Liposome of Hydrolyzed Salmon Collagen for Cosmetic Products. SCIENTIFICA 2024; 2024:7843660. [PMID: 39262843 PMCID: PMC11390188 DOI: 10.1155/2024/7843660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 09/13/2024]
Abstract
Hydrolyzed collagen (HC) derived from salmon (Oncorhynchus nerka) skin possesses properties that can nourish the skin, and it is one of the active ingredients used in cosmeceutical products for moisturizing the facial skin. However, HC solution gives off a fishy odor and it is gray in color that makes the product unacceptable for cosmetic purposes. This study aimed to use liposome-encapsulated hydrolyzed salmon collagen to improve its physical appearance, skin permeation, and eliminate the fishy odor. Two percent of HC and vitamin B3 (VitB3) were used as active ingredients to incorporate into liposomes. Phosphatidylcholine, cholesterol, and Tween 80 at a suitable weight ratio of 8 : 2 : 1 produced nano-sized vesicles (170.6 ± 0.70 nm) with the highest percentage of entrapment efficiency (95.72 ± 2.00%) of VitB3 and (49.63 ± 1.74%) of HC. Skin permeation and odor detection of the HC-VitB3 liposome were studied using Franz's diffusion cell and gas chromatography, respectively, and compared with HC-VitB3 solution. Subsequently, facial serums were formulated using HC-VitB3 liposomes and HC-VitB3 solutions, and a product satisfaction test was conducted with 100 volunteers to determine their preferred product. The results of the studies of HC-VitB3 liposome serum showed improved formulation appearance, enhanced skin permeation, and better odor elimination compared to the HC-VitB3 serum. Furthermore, seventy-three volunteers in the product satisfaction test preferred and selected the liposomal serum for its superior scent. From all the experimental results, it could be seen that liposomes can help increase skin penetration, and undesirable odors and colors can be masked by the appropriate lipid bilayer structure of liposomes.
Collapse
Affiliation(s)
- Thanaporn Amnuaikit
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rajeev Shankar Rajagopal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound Healing Properties of Natural Products: Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020598. [PMID: 36677659 PMCID: PMC9867334 DOI: 10.3390/molecules28020598] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
A wound is the loss of the normal integrity, structure, and functions of the skin due to a physical, chemical, or mechanical agent. Wound repair consists of an orderly and complex process divided into four phases: coagulation, inflammation, proliferation, and remodeling. The potential of natural products in the treatment of wounds has been reported in numerous studies, emphasizing those with antioxidant, anti-inflammatory, and antimicrobial properties, e.g., alkaloids, saponins, terpenes, essential oils, and polyphenols from different plant sources, since these compounds can interact in the various stages of the wound healing process. This review addresses the most current in vitro and in vivo studies on the wound healing potential of natural products, as well as the main mechanisms involved in this activity. We observed sufficient evidence of the activity of these compounds in the treatment of wounds; however, we also found that there is no consensus on the effective concentrations in which the natural products exert this activity. For this reason, it is important to work on establishing optimal treatment doses, as well as an appropriate route of administration. In addition, more research should be carried out to discover the possible side effects and the behavior of natural products in clinical trials.
Collapse
Affiliation(s)
- Marilyn S. Criollo-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Laura A. Contreras-Angulo
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Nayely Leyva-López
- Post-Doc. CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Luis Alfonso Jiménez-Ortega
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
- Correspondence:
| |
Collapse
|
5
|
Al-Rajhi AMH, Yahya R, Abdelghany TM, Fareid MA, Mohamed AM, Amin BH, Masrahi AS. Anticancer, Anticoagulant, Antioxidant and Antimicrobial Activities of Thevetia peruviana Latex with Molecular Docking of Antimicrobial and Anticancer Activities. Molecules 2022; 27:molecules27103165. [PMID: 35630642 PMCID: PMC9145871 DOI: 10.3390/molecules27103165] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major content of the flavonoids are rutin (11.45 µg/mL), quersestin (7.15 µg/mL), naringin (5.25 µg/mL), and hisperdin (6.07 µg/mL), while phenolic had chlorogenic (12.39 µg/mL), syringenic (7.45 µg/mL), and ferulic (5.07 µg/mL) acids in latex of T. peruviana. Via 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging, the experiment demonstrated that latex had a potent antioxidant activity with the IC50 43.9 µg/mL for scavenging DPPH. Hemolysis inhibition was 58.5% at 1000 µg/mL of latex compared with 91.0% at 200 µg/mL of indomethacin as positive control. Negligible anticoagulant properties of latex were reported where the recorded time was 11.9 s of prothrombin time (PT) and 29.2 s of the activated partial thromboplastin time (APTT) at 25 µg/mL, compared with the same concentration of heparin (PT 94.6 s and APPT 117.7 s). The anticancer potential of latex was recorded against PC-3 (97.11% toxicity) and MCF-7 (96.23% toxicity) at 1000 μg/mL with IC50 48.26 μg/mL and 40.31 µg/mL, respectively. Disc diffusion assessment for antimicrobial activity recorded that the most sensitive tested microorganisms to latex were Bacillus subtilis followed by Escherichia coli, with an inhibition zone (IZ) of 31 mm with minimum inhibitory concentration (MIC) (10.2 μg/mL) and 30 mm (MIC, 12.51 μg/mL), respectively. Moreover, Candida albicans was sensitive (IZ, 28 mm) to latex, unlike black fungus (Mucor circinelloides). TEM examination exhibited ultrastructure changes in cell walls and cell membranes of Staphylococcus aureus and Pseudomonas aeruginosa treated with latex. Energy scores of the molecular docking of chlorogenic acid with E. coli DNA (7C7N), and Rutin with human prostate-specific antigen (3QUM) and breast cancer-associated protein (1JNX), result in excellent harmony with the experimental results. The outcome of research recommended that the latex is rich in constituents and considered a promising source that contributes to fighting cancer and pathogenic microorganisms.
Collapse
Affiliation(s)
- Aisha M. H. Al-Rajhi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Reham Yahya
- Medical Microbiology, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia;
- King Abduallah International Medical Research Center, Riyadh 11671, Saudi Arabia
| | - Tarek M. Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11751, Egypt;
- Correspondence:
| | - Mohamed A. Fareid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11751, Egypt;
- Basic Science Department, Prep Year Deanship, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Alawlaqi M. Mohamed
- Biology Department, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia; (A.M.M.); (A.S.M.)
| | - Basma H. Amin
- The Regional Centre for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11751, Egypt;
| | - Abdurrahman S. Masrahi
- Biology Department, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia; (A.M.M.); (A.S.M.)
| |
Collapse
|
6
|
Vardeman E, Vandebroek I. Caribbean Women's Health and Transnational Ethnobotany. ECONOMIC BOTANY 2021; 76:205-226. [PMID: 34522053 PMCID: PMC8432280 DOI: 10.1007/s12231-021-09526-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Caribbean Women's Health and Transnational Ethnobotany. Immigrants from the Dominican Republic (DR) and Haiti are among the top foreign-born communities in New York City (NYC). As people migrate to new countries, they bring their ethnomedical beliefs and practices, and adapt their plant pharmacopoeias. Haiti and the DR share a flora on the island of Hispaniola. In NYC, the flora is limited to what is available in the city. We selected plants for future laboratory research based on ethnobotanical data from two surveys among Dominicans in the DR and NYC, and a Haitian literature review. In both Dominican datasets, gynecological infections were the top women's health condition treated with plants. We identified 10 species for this purpose reported by Dominicans that are also known medicines in Haitian culture, although not yet documented for women's health. Plants for gynecological infections potentially cause dysbiosis of the vaginal microbiota, and may increase rather than prevent disease. There is a public health need to assess traditional medicines for their ability to inhibit pathogenic bacteria, while causing minimal disruption to the vaginal flora. Several species are known antibacterials, but remain to be tested for their efficacy. These results also provide a foundation for a planned ethnobotanical survey among NYC Haitian women. Supplementary Information The online version contains supplementary material available at 10.1007/s12231-021-09526-3.
Collapse
Affiliation(s)
- Ella Vardeman
- The New York Botanical Garden, Institute of Economic Botany, 2900 Southern Boulevard, Bronx, NY 10458 USA
- City University of New York, Graduate Center, 365 5th Ave, New York, NY 10016 USA
| | - Ina Vandebroek
- The New York Botanical Garden, Institute of Economic Botany, 2900 Southern Boulevard, Bronx, NY 10458 USA
- City University of New York, Graduate Center, 365 5th Ave, New York, NY 10016 USA
| |
Collapse
|