1
|
Miyawaki S, Sawamoto A, Okuyama S, Nakajima M. Sulconazole induces pyroptosis promoted by interferon-γ in monocyte/macrophage lineage cells. J Pharmacol Sci 2024; 154:166-174. [PMID: 38395517 DOI: 10.1016/j.jphs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Imidazole derivatives are commonly used as antifungal agents. Here, we aimed to investigate the functions of imidazole derivatives on macrophage lineage cells. We assessed the expression levels of inflammatory cytokines in mouse monocyte/macrophage lineage (RAW264.7) cells. All six imidazole derivatives examined, namely ketoconazole, sulconazole, isoconazole, luliconazole, clotrimazole, and bifonazole, reduced the expression levels of inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-α, after induction by lipopolysaccharide (LPS) in RAW264.7 cells. These imidazole derivatives also induced cell death in RAW264.7 cells, regardless of the presence or absence of LPS. Since the cell death was characteristic in morphology, we investigated the mode of the cell death. An imidazole derivative, sulconazole, induced gasdermin D degradation together with caspase-11 activation, namely, pyroptosis in RAW264.7 cells and peritoneal macrophages. Furthermore, priming with interferon-γ promoted sulconazole-induced pyroptosis in RAW264.7 cells and macrophages and reduced the secretion of the inflammatory cytokine, IL-1β, from sulconazole-treated macrophages. Our results suggest that imidazole derivatives suppress inflammation by inducing macrophage pyroptosis, highlighting their modulatory potential for inflammatory diseases.
Collapse
Affiliation(s)
- Shiori Miyawaki
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan.
| |
Collapse
|
2
|
Padaraju A, Dwivedi F, Kumar G. Microemulsions, nanoemulsions and emulgels as carriers for antifungal antibiotics. Ther Deliv 2023; 14:721-740. [PMID: 38014430 DOI: 10.4155/tde-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
According to estimates, up to 25% of the world's population has fungal skin diseases, making them the most prevalent infectious disease. Several chemical classes of antifungal drugs are available to treat fungal infections. However, the major challenges of conventional formulations of antifungal drugs include poor pharmacokinetic profiles like solubility, low permeability, side effects and decreased efficacy. Novel drug delivery is a promising approach for overcoming pharmacokinetic limitations and increasing the effectiveness of antibiotics. In this review, we have shed light on microemulsions, nanoemulsions, and emulgels as novel drug delivery approaches for the topical delivery of antifungal antibiotics. We believe these formulations have potential translational value and could be developed for treating fungal infections in humans.
Collapse
Affiliation(s)
- Annapurna Padaraju
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Falguni Dwivedi
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
3
|
Niu J, Yuan M, Gao P, Wang L, Qi Y, Chen J, Bai K, Fan Y, Liu X. Microemulsion-Based Keratin-Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin. Gels 2023; 9:587. [PMID: 37504466 PMCID: PMC10379975 DOI: 10.3390/gels9070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Panpan Gao
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yueheng Qi
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingjing Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Kaiyue Bai
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
4
|
Alam A, Mustafa G, Agrawal GP, Hashmi S, Khan RA, Aba Alkhayl FF, Ullah Z, Ali MS, Elkirdasy AF, Khan S. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Yasir Siddique M, Nazar MF, Mahmood M, Saleem MA, Alwadai N, Almuslem AS, Alshammari FH, Haider S, Akhtar MS, Hussain SZ, Safdar M, Akhlaq M. Microemulsified Gel Formulations for Topical Delivery of Clotrimazole: Structural and In Vitro Evaluation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13767-13777. [PMID: 34753286 DOI: 10.1021/acs.langmuir.1c02590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microemulsified gels (μEGs) with fascinating functions have become indispensable as topical drug delivery systems due to their structural flexibility, high stability, and facile manufacturing process. Topical administration is an attractive alternative to traditional methods because of advantages such as noninvasive administration, bypassing first-pass metabolism, and improving patient compliance. In this article, we report on the new formulations of microemulsion-based gels suitable for topical pharmaceutical applications using biocompatible and ecological ingredients. For this, two biocompatible μE formulations comprising clove oil/Brij-35/water/ethanol (formulation A) and clove oil/Brij-35/water/1-propanol (formulation B) were developed to encapsulate and improve the load of an antimycotic drug, Clotrimazole (CTZ), and further gelatinized to control the release of CTZ through skin barriers. By delimiting the pseudo-ternary phase diagram, optimum μE formulations with clove oil (∼15%) and Brij-35 (∼30%) were developed, keeping constant surfactant/co-surfactant ratio (1:1), to upheld 2.0 wt % CTZ. The as-developed formulations were further converted into smart gels by adding 2.0 wt % carboxymethyl cellulose (CMC) as a cross-linker to adhere to the controlled release of CTZ through complex skin barriers. Electron micrographs show a fine, monodispersed collection of CTZ-μE nanodroplets (∼60 nm), which did not coalesce even after gelation, forming spherical CTZ-μEG (∼90 nm). However, the maturity of CTZ nanodroplets observed by dynamic light scattering suggests the affinity of CTZ for the nonpolar microenvironment, which was further supported by the peak-to-peak correlation of Fourier transform infrared (FTIR) analysis and fluorescence measurement. In addition, HPLC analysis showed that the in vitro permeation release of CTZ-μEG from rabbit skin in the ethanolic phosphate buffer (pH = 7.4) was significantly increased by >98% within 6.0 h. This indicates the sustained release of CTZ in μEBG and the improvement in transdermal therapeutic efficacy of CTZ over its traditional topical formulations.
Collapse
Affiliation(s)
| | - Muhammad Faizan Nazar
- Department of Chemistry, University of Education Lahore, Multan Campus 60700, Pakistan
| | - Marryam Mahmood
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia
| | - Amani Saleh Almuslem
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fwzah H Alshammari
- Department of Physics, University Colleges at Nairiyah, University of Hafr Al Batin (UHB), Nairiyah 31981 Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Muhammad Safdar
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KPK 29220, Pakistan
| | - Muhammad Akhlaq
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KPK 29220, Pakistan
| |
Collapse
|