1
|
Saha R, Majie A, Baidya R, Sarkar B. Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology 2024:10.1007/s10787-024-01555-3. [PMID: 39162902 DOI: 10.1007/s10787-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Polyphenolic compounds are among the most widely researched compounds for various therapeutic applications. However, naturally occurring phenylethanoid glycosides are least explored under this class of compounds. One such phenylethanoid glycoside, verbascoside (Vb), abundantly found among 200 species of 23 families, has gained recent attention due to its wide-spectrum therapeutic properties such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, cardioprotective, skin-protective, and anti-cancer. Despite having multiple therapeutic benefits, due to its large size, the compound has poor bioavailability for oral and topical applications. To meet these limitations, current research on Vb focuses on delivering it through nanoformulations. Presently, most developed formulations are liposome based for various applications, such as corneal epithelial wound healing, anti-neuropathic, anti-wrinkle, anti-hyperalgesia, atopic dermatitis, alopecia, and cutaneous wound healing. Multiple studies have confirmed the least acute and sub-acute toxicity for Vb. Few clinical studies have been performed for the therapeutic application of Vb to manage COVID-19, nephropathy, platelet aggregation, chronic primary glomerulonephritis, and acute hepatitis. Recent studies have shown the immense therapeutic potential of Vb in wound healing, dermatitis, neuroprotection, and anti-cancer activities, which creates a need for developing novel formulations for their respective uses. Long-term toxicity studies and techniques for scaling up Vb production by biotechnological approaches should be emphasized.
Collapse
Affiliation(s)
- Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
2
|
Bentke-Imiolek A, Szlęzak D, Zarzycka M, Wróbel M, Bronowicka-Adamska P. S-Allyl-L-Cysteine Affects Cell Proliferation and Expression of H 2S-Synthetizing Enzymes in MCF-7 and MDA-MB-231 Adenocarcinoma Cell Lines. Biomolecules 2024; 14:188. [PMID: 38397425 PMCID: PMC10886539 DOI: 10.3390/biom14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
S-allyl-L-cysteine (SAC) is a sulfur compound present in fresh garlic. The reference literature describes its anticancer, antioxidant and neuroprotective effects. Breast cancer is infamously known as one of the most commonly diagnosed malignancies among women worldwide. Its morbidity and mortality make it reasonable to complete and expand knowledge on this cancer's characteristics. Hydrogen sulfide (H2S) and its naturally occurring donors are well-known investigation subjects for diverse therapeutic purposes. This study was conducted to investigate the SAC antiproliferative potential and effect on three enzymes involved in H2S metabolism: 3-mercaptopyruvate sulfurtransferase (MPST), cystathionine γ-lyase (CTH), and cystathionine β-synthase (CBS). We chose the in vitro cellular model of human breast adenocarcinomas: MCF-7 and MDA-MB-231. The expression of enzymes after 2, 4, 6, 8, and 24 h incubation with 2.24 mM, 3.37 mM, and 4.50 mM SAC concentrations was examined. The number of living cells was determined by the MTS assay. Changes in cellular plasma membrane integrity were measured by the LDH test. Expression changes at the protein level were analyzed using Western blot. A significant decrease in viable cells was registered for MCF-7 cells after all incubation times upon 4.50 mM SAC exposure, and after 6 and 24 h only in MDA-MB-231 upon 4.50 mM SAC. In both cell lines, the MPST gene expression significantly increased after the 24 h incubation with 4.50 mM SAC. S-allyl-L-cysteine had opposite effects on changes in CTH and CBS expression in both cell lines. In our research model, we confirmed the antiproliferative potential of SAC and concluded that our studies provided current information about the increase in MPST gene expression mediated by S-allyl-L-cysteine in the adenocarcinoma in vitro cellular model for the MCF-7 and MDA-MB-231 cell lines. Further investigation of this in vitro model can bring useful information regarding sulfur enzyme metabolism of breast adenocarcinoma and regulating its activity and expression (gene silencing) in anticancer therapy.
Collapse
Affiliation(s)
- Anna Bentke-Imiolek
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 7 Kopernika Street, 31-034 Kraków, Poland; (D.S.); (M.Z.); (M.W.); (P.B.-A.)
| | | | | | | | | |
Collapse
|
3
|
Chittasupho C, Samee W, Na Takuathung M, Okonogi S, Nimkulrat S, Athikomkulchai S. Clerodendrum chinense Stem Extract and Nanoparticles: Effects on Proliferation, Colony Formation, Apoptosis Induction, Cell Cycle Arrest, and Mitochondrial Membrane Potential in Human Breast Adenocarcinoma Breast Cancer Cells. Int J Mol Sci 2024; 25:978. [PMID: 38256052 PMCID: PMC10815711 DOI: 10.3390/ijms25020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand;
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand
| |
Collapse
|
4
|
Sukohar A, Iqbal M, Triyandi R, Sahidin. Melinjo Seeds ( Gnetum gnemon L.) Antioxidant Activity and Cytotoxic Effects on MCF-7 Breast Cancer Cells: A Study Based on Tracing of Resveratrol Compound. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:16-23. [PMID: 38694961 PMCID: PMC11060622 DOI: 10.4103/jpbs.jpbs_878_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 05/04/2024] Open
Abstract
Introduction Breast cancer is one of the deadliest cancers worldwide. One of the polyphenols, namely, resveratrol, has been proven to have anticancer activity. Melinjo seeds which contain resveratrol need to be tested for their potential as an anti-breast cancer agent. This study aims to determine the antioxidant activity and cytotoxic effect of melinjo seeds based on solvent variations and resveratrol tracing. Methods Extraction of melinjo seeds was performed using the soxhletation method. Antioxidant test was performed using the 2,2-diphenyl-1-picrylhydrazil method. The in vitro cytotoxic test was carried out using the microtetrazolium method. Cytotoxic test was carried out on MCF-7 breast cancer cells using a concentration range of melinjo seeds between 31,25 and 1000 μg/mL. Antioxidant and anticancer potentials are expressed in inhibitory concentration (IC)50 values. Resveratrol was traced using preparative high-performance liquid chromatography (Prep-HPLC). Results Melinjo seed ethanol extract provided the largest total phenolics (126,154 ± 0,865 mg GAE/g sample) and total flavonoids (44,576 ± 0,611 mg QE/g sample) among all solvent fractions. The antioxidant activity of melinjo seeds from ethanol extract, n-hexane fraction, ethyl acetate fraction, and ethanol fraction was 263,307 ppm, 317,595 ppm, 160,878 ppm, and 181,159 ppm, respectively. The ethyl acetate fraction of melinjo seeds showed the strongest cytotoxic effect (94.6 μg/mL) among all extracts and solvent fractions. Prep-HPLC showed that the ethanol extract of melinjo seeds contained resveratrol, while the ethanol and ethyl acetate fractions of melinjo seeds were thought to contain resveratrol derivatives. Conclusion The antioxidant activity of melinjo seeds showed a cytotoxic effect on MCF-7 cells, which varied based on solvent polarity and total phenolic and total flavonoid. The ethyl acetate fraction which is thought to contain resveratrol derivatives provides the most potent antioxidant activity and cytotoxic effect. These results indicate that melinjo seeds containing resveratrol and its derivatives have the potential for anticancer of the breast. Further studies are still needed in determining the structure of resveratrol compounds and their derivatives to ensure their biological activity and mechanism of action.
Collapse
Affiliation(s)
- Asep Sukohar
- Department of Pharmacology, Faculty of Medicine, University of Lampung, Indonesia
| | - Muhammad Iqbal
- Pharmacy Major, Faculty of Medicine, University of Lampung, Indonesia
| | - Ramadhan Triyandi
- Pharmacy Major, Faculty of Medicine, University of Lampung, Indonesia
| | - Sahidin
- Faculty of Mathematics and Natural Sciences, Halu Oleo University Kendari, Indonesia
| |
Collapse
|
5
|
García A, Torres-Ruiz S, Vila L, Villarroel-Vicente C, Bernabeu Á, Eroles P, Cabedo N, Cortes D. Synthesis of 2-aminopropyl benzopyran derivatives as potential agents against triple-negative breast cancer. RSC Med Chem 2023; 14:2327-2341. [PMID: 38020071 PMCID: PMC10650959 DOI: 10.1039/d3md00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
Synthesis of three series of 2-aminopropyl derivatives containing a benzopyran nucleus was performed to evaluate their performance against triple-negative breast cancer cell lines (MDA-MB-231 and MDA-MB-436) and normal breast epithelial cells (MCF10A). For the three series, the cytotoxic activity was as follows: N-methylated derivatives (tertiary amines) 5b, 6b, and 7b > secondary amine benzopyrans 5, 6, and 7 > quaternary amine salts 5c, 6c, and 7c > free phenolic derivatives 5a, 6a, and 7a. The structure-activity relationship showed the importance of the presence of an amine group and a p-fluorobenzyloxy substituent in the chromanol ring (IC50 values from 1.5 μM to 58.4 μM). In addition, 5a, 5b, 6a, and 7b displayed slight selectivity towards tumor cells. Compounds 5, 5a, 5b, 6, 6a, 6c, 7, and 7b showed apoptotic/necrotic effects due to, at least in part, an increase in reactive oxygen species generation, whereas 5b, 5c, 6b, 7a, and 7c caused cell cycle arrest in the G1 phase. Further cell-based mechanistic studies revealed that 5a, 6a, and 7b, which were the most promising compounds, downregulated the expression of Bcl-2, while 5b downregulated the expression of cyclins CCND1 and CCND2. Therefore, 2-aminopropyl benzopyran derivatives emerge as new hits and potential leads for developing useful agents against breast cancer.
Collapse
Affiliation(s)
- Ainhoa García
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Sandra Torres-Ruiz
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Álvaro Bernabeu
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
| | - Pilar Eroles
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
- Department of Physiology, University of Valencia 46010 Valencia Spain
- Center for Biomedical Network Research on Cancer (CIBERONC) 28019 Madrid Spain
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia 46010 Valencia Spain
| | - Diego Cortes
- Department of Pharmacology, University of Valencia 46100 Valencia Spain
| |
Collapse
|
6
|
Zhao Y, Wang S, Pan J, Ma K. Verbascoside: A neuroprotective phenylethanoid glycosides with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155027. [PMID: 37657207 DOI: 10.1016/j.phymed.2023.155027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Verbascoside is a natural and water-soluble phenylethanoid glycoside found in several medicinal plants. It has extensive pharmacological effects, including antioxidative and antineoplastic actions, and a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical and limited clinical evidence to fully discuss the anti-depression capacity of verbascoside and its holistic characteristics that can contribute to better management of depression in vivo and in vitro models, as well as, its toxicities and medicinal value. METHODS This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A systematic review of 32 preclinical trials published up to April 2023, combined with a comprehensive bioinformatics analysis of network pharmacology and molecular docking, was conducted to elucidate the antidepressant mechanism of action of verbascoside. Studies included in the systematic review were obtained from 7 electronic databases: PubMed, Scopus, Web of Science, Cochrane, ResearchGate, ScienceDirect, and Google Scholar. RESULTS Studies on the antidepressant effects of verbascoside showed that various pharmacological mechanisms and pathways, such as modulating the levels of monoamine neurotransmitters, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperfunction and promoting neuroprotection may be involved in the process of its action against depression. Verbascoside promotes dopamine (DA) biosynthesis by promoting the expression of tyrosine hydroxylase mRNA and protein, upregulates the expression of 5-hydroxytryptamine receptor 1B (5-HT1B), prominence protein, microtubule-associated protein 2 (MAP2), hemeoxygenase-1 (HO-1), SQSTM1, Recombinant Autophagy Related Protein 5 (ATG5) and Beclin-1, and decreases the expression of caspase-3 and a-synuclein, thus exerting antidepressant effects. We identified seven targets (CCL2, FOS, GABARAPL1, CA9, TYR, CA12, and SQSTM1) and three signaling pathways (glutathione metabolism, metabolism of xenobiotics by cytochrome P450, fluid shear stress and atherosclerosis) as potential molecular biological sites for verbascoside. CONCLUSIONS These findings provide strong evidence that verbascoside exerts its antidepressant effects through various pharmacological mechanisms. However, further multicentre clinical case-control and molecularly targeted fishing studies are required to confirm the clinical efficacy of verbascoside and its underlying direct targets.
Collapse
Affiliation(s)
- Yi Zhao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Sijia Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
7
|
Lopes da Silva FL, Scotti AS, Garcia ALH, Brodt Lemes ML, Grivicich I, Dos Reis GM, Dias JF, Menezes Boaretto FB, Picada JN, da Silva J, Ferraz ADBF. Toxicological potential of Aloysia gratissima: Insights from chemical analysis and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116614. [PMID: 37164253 DOI: 10.1016/j.jep.2023.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloysia gratissima leaves are popularly used to treat respiratory, digestive, and nervous system disorders. Several studies have been carried out to determine the biological activity of A. gratissima, such as its antibacterial and anti-edematogenic activities, but despite the beneficial uses of A. gratissima, few studies have examined the toxicological profile of this plant. AIM OF THE STUDY This study aimed to determine the chemical composition, cytotoxic, genotoxic, mutagenic potential, and antioxidant activity of an aqueous extract of A. gratissima leaves (AG-AEL). MATERIAL AND METHODS The phytochemical constitution of AG-AEL was assessed by colorimetric analyses and High-performance liquid chromatography (HPLC). The inorganic elements were detected by Particle-Induced X-ray Emission (PIXE). The antioxidant, cytotoxicity, genotoxic, and mutagenic activities were evaluated in vitro by Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH), Sulforhodamine B (SRB) assay, comet assay, and Salmonella/microsome assays. RESULTS AG-AEL indicated the presence of terpenoids, flavonoids, and phenolic acids. HPLC detected rutin at 2.41 ± 0.33 mg/100 mg. PIXE analysis indicated the presence of Mg, Si, P, S, K, Ca, Mn, and Zn. The 50% inhibitory concentration was 84.17 ± 3.17 μg/mL in the DPPH assay. Genotoxic effects were observed using the Comet assay in neuroblastoma (SH-SY5Y) cells and mutations were observed in TA102 and TA97a strains. The extract showed cytotoxic activities against ovarian (OVCAR-3), glioblastoma (U87MG), and colon (HT-29) cancer cell lines. CONCLUSIONS In conclusion, AG-AEL increased DNA damage, induced frameshift, and oxidative mutations, and showed cytotoxic activities against different cancer cells. The in vitro toxicological effects observed suggest that this plant preparation should be used with caution, despite its pharmacological potential.
Collapse
Affiliation(s)
- Francisco Laerte Lopes da Silva
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Amanda Souza Scotti
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Postgraduate Program in Health and Human Development. University La Salle, Canoas, Brazil
| | - Maria Luiza Brodt Lemes
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ivana Grivicich
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Gabriela Mendonça Dos Reis
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Brião Menezes Boaretto
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Postgraduate Program in Health and Human Development. University La Salle, Canoas, Brazil.
| | - Alexandre de Barros Falcão Ferraz
- Regional Scientific Development Program (PDCR-FAPEPI/CNPq). Department of Chemistry, Federal Institute of Piauí (IFPI), Teresina, PI, Brazil.
| |
Collapse
|
8
|
Budzianowska A, Totoń E, Romaniuk-Drapała A, Kikowska M, Budzianowski J. Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago lanceolata L. Life (Basel) 2023; 13:life13020556. [PMID: 36836912 PMCID: PMC9967538 DOI: 10.3390/life13020556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The aim of the study is to investigate whether the bioactive compounds isolated from P. lanceolata inflorescences, namely, phenylethanoid glucosides, acteoside, plantamajoside, and a flavonoid, isorhamnetin-3-O-rutinoside-4'-O-glucoside, possessed cytotoxic activity against the selected cancer cell lines. The potential antitumor effects of two phenylethanoid glycosides and one flavonoid were evaluated via MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on seven human carcinoma cell lines (MCF-7, MDA-MB-231, Caco-2, HepG2, OVCAR-3, U138-MG, U251-MG) and one nontumorigenic mammary epithelial cell line (MCF-12A). For the first time, acteoside was studied in ovarian cancer cell line OVCAR-3, and plantamajoside in all cell lines except breast adenocarcinoma MDA-MB-281 and hepatocarcinoma HepG2. The phenylethanoid glycosides showed stronger cytotoxic activity than that of the glycoside flavonoid. Acteoside and plantamajoside, at concentrations of 200 and 300 μM, respectively, had a highly toxic effect on the selected two cancer cell lines of breast adenocarcinoma MDA-MB-231 and MCF-7, ovarian cancer cell line OVCAR-3, glioblastoma cell line U138-MG, and hepatocarcinoma cell line HepG2. Both glycosides were significantly less cytotoxic towards nontumorigenic cell line MCF-12A; the effect appeared at a concentration of 400 μM. For the first time, the activity of acteoside and plantamajoside was compared in one parallel investigation. The results are discussed against a broad background of existing knowledge on biological effects, their mechanisms, and structure-activity relationships. Phenylethanoids may be potential compounds with cytotoxic activity against the selected cancer types.
Collapse
Affiliation(s)
- Anna Budzianowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, 60-806 Poznań, Poland
- Correspondence:
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Małgorzata Kikowska
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Jaromir Budzianowski
- Laboratory of Pharmaceutical Biology and Biotechnology, Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
9
|
Popović M, Burčul F, Veršić Bratinčević M, Režić Mužinić N, Skroza D, Frleta Matas R, Nazlić M, Ninčević Runjić T, Jukić Špika M, Bego A, Dunkić V, Vitanović E. In the Beginning Was the Bud: Phytochemicals from Olive ( Olea europaea L.) Vegetative Buds and Their Biological Properties. Metabolites 2023; 13:metabo13020237. [PMID: 36837856 PMCID: PMC9966879 DOI: 10.3390/metabo13020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Even though Olea europaea L. is one of the most important and well-studied crops in the world, embryonic parts of the plants remain largely understudied. In this study, comprehensive phytochemical profiling of olive vegetative buds of two Croatian cultivars, Lastovka and Oblica, was performed with an analysis of essential oils and methanol extracts as well as biological activities (antioxidant, antimicrobial, and cytotoxic activities). A total of 113 different volatiles were identified in essential oils with hydrocarbons accounting for up to 60.30% and (Z)-3-heptadecene being the most abundant compound. Oleacein, oleuropein, and 3-hydroxytyrosol had the highest concentrations of all phenolics in the bud extracts. Other major compounds belong to the chemical classes of sugars, fatty acids, and triterpenoid acids. Antioxidant, antimicrobial, and cytotoxic activities were determined for both cultivars. Apart from antioxidant activity, essential oils had a weak overall biological effect. The extract from cultivar Lastovka showed much better antioxidant activity than both isolates with both methods (with an oxygen radical absorbance capacity value of 1835.42 μM TE/g and DPPH IC50 of 0.274 mg/mL), as well as antimicrobial activity with the best results against Listeria monocytogenes. The human breast adenocarcinoma MDA-MB-231 cell line showed the best response for cultivar Lastovka bud extract (IC50 = 150 μg/mL) among three human cancer cell lines tested. These results demonstrate great chemical and biological potential that is hidden in olive buds and the need to increase research in the area of embryonic parts of plants.
Collapse
Affiliation(s)
- Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Correspondence: ; Tel.: +385-21434450
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Roberta Frleta Matas
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia
| | - Marija Nazlić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department for Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Maja Jukić Špika
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Ana Bego
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Valerija Dunkić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Elda Vitanović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
10
|
Elbe H, Ozturk F, Yigitturk G, Baygar T, Cavusoglu T. Anticancer activity of linalool: comparative investigation of ultrastructural changes and apoptosis in breast cancer cells. Ultrastruct Pathol 2022; 46:348-358. [PMID: 35727696 DOI: 10.1080/01913123.2022.2091068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Breast cancer is the most common cancer in women ın the world. Many anticancer drugs are currently used clinically have been isolated from plant species or are based on such substances. Linalool is aromatic compounds from the monoterpene group. It is the main constituents of essential oils and show antiproliferative, antioxidant, and antiseptic properties. The aim of this study was to investigate the antiproliferativeand apoptotic, effects of linalool in MCF-7 and MDA-MB-231 human breast cancer cells. MCF-7 and MDA-MB-231 human breast cancer cells were treated with different concentrations of linalool (100, 200, 400, 600, 800, 1000 µM) at 24 h and 48 h. MTT assay for cell proliferation and Annexin V assay for apoptosis was done. The morphology of breast cancer cells was investigated by lıght mıcroscope and scanning electron microscope (SEM). The study show that linalool significantly induced apoptosis in all groups as dose and time-dependent (p < .05). Linalool has apoptotic and antiproliferative properties in a concentration and time-dependent manner in breast cancer cells. The cytotoxic effects of linalool on MCF-7 and MDA-MB-231 human breast cancer cells was found to be associated with apoptotic cell death. Linalool was more effective on MCF-7 human breast cancer cells in smaller amounts.
Collapse
Affiliation(s)
- Hulya Elbe
- Department of Histology and Embryology, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey
| | - Feral Ozturk
- Department of Histology and Embryology, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey
| | - Tuba Baygar
- Research Laboratories Center, Material Research Laboratory, Mugla Sitki Kocman University , Mugla, Turkey
| | - Turker Cavusoglu
- Department of Histology and Embryology, Izmır Bakırcay University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
11
|
Genovese C, Garozzo A, D’Angeli F, Malfa GA, Bellia F, Tomasello B, Nicolosi D, Malaguarnera R, Ronsisvalle S, Guadagni F, Acquaviva R. Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells 2022; 11:1696. [PMID: 35626733 PMCID: PMC9139723 DOI: 10.3390/cells11101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and β-Coronavirus by the plaque reduction assay. RESULTS The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.
Collapse
Affiliation(s)
- Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography, National Research Council (CNR), 95126 Catania, Italy;
| | - Barbara Tomasello
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Daria Nicolosi
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Microbiology Section, University of Catania, 95125 Catania, Italy
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
| | - Simone Ronsisvalle
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Rosaria Acquaviva
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| |
Collapse
|
12
|
Friščić M, Petlevski R, Kosalec I, Madunić J, Matulić M, Bucar F, Hazler Pilepić K, Maleš Ž. Globularia alypum L. and Related Species: LC-MS Profiles and Antidiabetic, Antioxidant, Anti-Inflammatory, Antibacterial and Anticancer Potential. Pharmaceuticals (Basel) 2022; 15:506. [PMID: 35631332 PMCID: PMC9146695 DOI: 10.3390/ph15050506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Species from the genus Globularia L. have been used as healing agents for various ailments, with utilization of Globularia alypum L. being most frequently reported. The aim of this study was to evaluate the antidiabetic, antioxidant, anti-inflammatory, antibacterial and anticancer potential of G. alypum and three related species, G. punctata Lapeyr., G. cordifolia L. and G. meridionalis (Podp.) O.Schwarz, in relation to their phytochemical compositions. Globularin and verbascoside were identified using LC-PDA-ESI-MSn as the major metabolites of G. alypum with known biological activities. G. alypum demonstrated the greatest α-glucosidase inhibitory activity and DPPH radical scavenging activity (IC50 = 17.25 μg/mL), while its anti-inflammatory activity was not significantly different from those of related species. All investigated species showed considerable antibacterial activity against methicillin-resistant Staphylococcus aureus in the broth microdilution method (MIC = 1.42-3.79 mg/mL). G. punctata also showed antibacterial activities against Escherichia coli (MIC = 1.42 mg/mL), Bacillus subtilis (MIC = 1.89 mg/mL), B. cereus (MIC = 2.84 mg/mL) and Enterococcus faecalis (MBC = 5.68 mg/mL). G. punctata, G. cordifolia and G. meridionalis showed greater anticancer potential than G. alypum. Obtained results indicate investigated Globularia species could serve as sources of diverse bioactive molecules, with G. punctata having the greatest antibacterial potential.
Collapse
Affiliation(s)
- Maja Friščić
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| | - Roberta Petlevski
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, HR-10000 Zagreb, Croatia;
| | - Ivan Kosalec
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia;
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia;
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, A-8010 Graz, Austria;
| | - Kroata Hazler Pilepić
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| | - Željan Maleš
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| |
Collapse
|