1
|
Rademaker E, Bastiaannet E, Oosting J, Dekker-Ensink NG, Kuppen PJK, de Miranda NFCC, Liefers GJ. Revising the Role of Integrin Subunit β4 Expression in Colon Cancer Progression and Survival. J Gastrointest Cancer 2023; 54:147-154. [PMID: 35112314 PMCID: PMC10182939 DOI: 10.1007/s12029-021-00787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Integrin subunit β4 (β4) has been proposed to play an important role in colon cancer progression through its involvement in hemidesmosome disassembly processes and tumor cell migration. However, the association between β4 expression and clinicopathological outcomes in colon cancer remains unclear. METHODS Expression of β4 was assessed by immunohistochemistry in a large cohort of 651 colon cancer patients, the largest colon cancer cohort so far. Chi-squared tests were used to study the association between β4 expression and clinicopathological features. Overall and disease-free survival were assessed by Cox proportional hazard models. RESULTS Loss of β4 expression was associated with local tumor invasion. Only 17.9% of the pT1 tumors displayed weak β4 expression level versus 28.1% of pT4 tumors, and 25.0% of the pT1 tumors had a high expression level versus 8.6% of the pT4 tumors (p = 0.012). No association between β4 expression and overall (p = 0.845) or disease-free survival (p = 0.767) was encountered, which disputes the role of β4 as a biomarker of malignant behavior in colon cancer. CONCLUSION Contradictory reports have suggested opposite roles for β4 expression in (colon) cancer progression. In the present large cohort of colon cancer patients, we found that β4 expression was not associated with worse clinical prognosis, but decreased with advanced pathological tumor stage. Future studies should establish whether loss of β4 expression promotes invasive characteristics of colon cancer cells.
Collapse
Affiliation(s)
- Eva Rademaker
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Esther Bastiaannet
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeltje G Dekker-Ensink
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| | - Peter J K Kuppen
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| | | | - Gerrit J Liefers
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
2
|
Sivaraman K, Shanthi C. Purified fish skin collagen hydrolysate attenuates TNF-α induced barrier dysfunction in-vitro and DSS induced colitis in-vivo model. Int J Biol Macromol 2022; 222:448-461. [PMID: 36116587 DOI: 10.1016/j.ijbiomac.2022.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Inflammatory mediators are key components in establishing pathogenesis in inflammatory bowel disease. Balanced expression of anti-inflammatory and pro-inflammatory cytokines is an important cue in maintaining gut native and adaptive immunity. In the present study, purified hydrolysate fraction of fish skin collagen from Clarias batrachus and Pangasius pangasius was evaluated as a treatment agent against TNF-α induced barrier dysfunction in Caco-2 cell line model and DSS induced colitis in mice model. Cell adhesion on purified hydrolysate fraction coated surfaces was found to be enhanced with increasing concentration in both Clarias batrachus and Pangasius pangasius. Alkaline phosphatase activity was enhanced in a concentration-dependent manner. The paracellular permeability assay demonstrated that Pangasius pangasius purified hydrolysate fraction had countered TNF-α induced barrier dysfunction. Analysis of the tight junction proteins (occludin, zonulae occluden, and claudin) by RT PCR, immunofluorescence, and western blot, further confirmed the effectiveness of Pangasius pangasius purified hydrolysate fraction against TNF-α. The Pangasius pangasius purified hydrolysate fraction was further evaluated for efficacy in DSS-induced colitis mice model. Two concentration of Pangasius pangasius purified hydrolysate was chosen based on in-vitro experiments, 80 μg/kg and 200 μg/kg BW of Balb/C male mice administered through intra-rectal route along with fish skin collagen 80 μg/kg BW. Pangasius pangasius purified hydrolysate fraction treatment improved the clinical signs of colitis such as body weight, rectal bleeding, colon length, and stool consistency caused by DSS administration. Immunofluorescence of colon tissue section showed that Pangasius pangasius purified hydrolysate fraction enhanced the expression of occludin protein. This study hints at the use of Pangasius pangasius purified hydrolysate fraction as a potential nutraceutical or treatment agent in healing ulcers of the mucosa.
Collapse
Affiliation(s)
- K Sivaraman
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - C Shanthi
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
3
|
Saha S, Soliman A, Rajasekaran S. A robust and stable gene selection algorithm based on graph theory and machine learning. Hum Genomics 2021; 15:66. [PMID: 34753514 PMCID: PMC8579680 DOI: 10.1186/s40246-021-00366-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nowadays we are observing an explosion of gene expression data with phenotypes. It enables us to accurately identify genes responsible for certain medical condition as well as classify them for drug target. Like any other phenotype data in medical domain, gene expression data with phenotypes also suffer from being a very underdetermined system. In a very large set of features but a very small sample size domain (e.g. DNA microarray, RNA-seq data, GWAS data, etc.), it is often reported that several contrasting feature subsets may yield near equally optimal results. This phenomenon is known as instability. Considering these facts, we have developed a robust and stable supervised gene selection algorithm to select a set of robust and stable genes having a better prediction ability from the gene expression datasets with phenotypes. Stability and robustness is ensured by class and instance level perturbations, respectively. RESULTS We have performed rigorous experimental evaluations using 10 real gene expression microarray datasets with phenotypes. They reveal that our algorithm outperforms the state-of-the-art algorithms with respect to stability and classification accuracy. We have also performed biological enrichment analysis based on gene ontology-biological processes (GO-BP) terms, disease ontology (DO) terms, and biological pathways. CONCLUSIONS It is indisputable from the results of the performance evaluations that our proposed method is indeed an effective and efficient supervised gene selection algorithm.
Collapse
Affiliation(s)
- Subrata Saha
- Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Ahmed Soliman
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
4
|
Vinod R, Mahran R, Routila E, Leivo J, Pettersson K, Gidwani K. Nanoparticle-Aided Detection of Colorectal Cancer-Associated Glycoconjugates of Extracellular Vesicles in Human Serum. Int J Mol Sci 2021; 22:ijms221910329. [PMID: 34638669 PMCID: PMC8508761 DOI: 10.3390/ijms221910329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are found in all biological fluids, providing potential for the identification of disease biomarkers such as colorectal cancer (CRC). EVs are heavily glycosylated with specific glycoconjugates such as tetraspanins, integrins, and mucins, reflecting the characteristics of the original cell offering valuable targets for detection of CRC. We report here on europium-nanoparticle (EuNP)-based assay to detect and characterize different surface glycoconjugates of EVs without extensive purification steps from five different CRC and the HEK 293 cell lines. The promising EVs candidates from cell culture were clinically evaluated on small panel of serum samples including early-stage (n = 11) and late-stage (n = 11) CRC patients, benign condition (n = 11), and healthy control (n = 10). The majority of CRC cell lines expressed tetraspanin sub-population and glycovariants of integrins and conventional tumor markers. The subpopulation of CD151 having CD63 expression (CD151CD63) was significantly (p = 0.001) elevated in early-stage CRC (8 out of 11) without detecting any benign and late-stage samples, while conventional CEA detected mostly late-stage CRC (p = 0.045) and with only four early-stage cases. The other glycovariant assays such as CEACon-A, CA125WGA, CA 19.9Ma696, and CA 19.9Con-A further provided some complementation to the CD151CD63 assay. These results indicate the potential application of CD151CD63 assay for early detection of CRC patients in human serum.
Collapse
Affiliation(s)
- Rufus Vinod
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Randa Mahran
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
- Tropical Health and Parasitology Department, High Institute of Public Health, Alexandria University, Alexandria 21617, Egypt
| | - Erica Routila
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Janne Leivo
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Kim Pettersson
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
| | - Kamlesh Gidwani
- Department of Life Technologies, University of Turku, 20520 Turku, Finland; (R.V.); (R.M.); (E.R.); (J.L.); (K.P.)
- Correspondence:
| |
Collapse
|
5
|
Lin BQ, Zhang WB, Zhao J, Zhou XH, Li YJ, Deng J, Zhao Q, Fu G, Xie CM, Xu YK, Feng GK. An Optimized Integrin α6-Targeted Magnetic Resonance Probe for Molecular Imaging of Hepatocellular Carcinoma in Mice. J Hepatocell Carcinoma 2021; 8:645-656. [PMID: 34235103 PMCID: PMC8244641 DOI: 10.2147/jhc.s312921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Integrin α6 is an attractive diagnostic biomarker for molecular imaging of hepatocellular carcinoma (HCC) as it has an extremely high positive rate (approximately 94%) in clinical early-stage HCC. In this study, based on our previously identified integrin α6-targeted peptide, we developed an optimized integrin α6-targeted magnetic resonance (MR) probe dubbed DOTA(Gd)-ANADYWR for MR imaging of HCC in mice. Materials and Methods The longitudinal (R1) relaxivity of DOTA(Gd)-ANADYWR was measured on a 3.0 T MR system . The specific tumor enhancement of the agent was investigated in four distinct mouse models, including subcutaneous, orthotopic, genetically engineered and chemically induced HCC mice. Results The R1 relaxivity value of DOTA(Gd)-ANADYWR is 5.11 mM−1s−1 at 3.0 T, which is similar to that of the nonspecific clinical agent Gadoteridol. DOTA(Gd)-ANADYWR generated superior enhanced MR signal in HCC lesions and provided complementary enhancement MR signals to the clinically available hepatobiliary MR contrast agent gadoxetate disodium (Gd-EOB-DTPA). Importantly, DOTA(Gd)-ANADYWR could efficiently visualize small HCC lesion (approximately 1 mm) which was hardly detected by the clinical Gd-EOB-DTPA. Conclusion These findings suggest the potential application of this integrin α6-targeted MR probe for the detection of HCC, particularly for small HCC.
Collapse
Affiliation(s)
- Bing-Quan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Wen-Biao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jing Zhao
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xu-Hui Zhou
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Yong-Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun Deng
- Department of Biological Products, Guangdong Institute for Drug Control, Guangzhou, 510663, People's Republic of China
| | - Qin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Gui Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chuan-Miao Xie
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yi-Kai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
6
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Wang S, Wang R, Li GQ, Cho JL, Deng Y, Li Y. Myosin light chain kinase mediates intestinal barrier dysfunction following simulated microgravity based on proteomic strategy. J Proteomics 2020; 231:104001. [PMID: 33035716 DOI: 10.1016/j.jprot.2020.104001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Microgravity induces injury of intestinal barrier. However, the underlying mechanism remains unclear. The present study aimed to investigate the pathological change of intestinal mucosa induced by long term simulated microgravity and to explore its etiological mechanism using a proteomic approach. The well accepted tail-suspended rat model was used to simulate microgravity. The damage of rat small intestine was evaluated via histological and molecular test, and a label-free comparative proteomic strategy was used to determine the molecular mechanism. Simulated microgravity for 21 days damaged intestine barrier with decreased numbers of the goblet cells, large intercellular space, and down-regulated adhesion molecules, accompanied by increased intestinal permeability. Proteomic analysis identified 416 differentially expressed proteins and showed simulated microgravity dramatically down-regulated the adhesion molecules and deteriorated several pathways for metabolism, focal adhesion, and regulation of actin cytoskeleton. Western-blot analysis confirmed that myosin regulatory light chain (MLC) 12B was significantly down-regulated, while rho-associated protein kinase, myosin light chain kinase (MLCK), and phosphorylated MLC were dramatically up-regulated. Taken together, these data reveal that down-regulation of adhesion molecules and MLCK dependent up-regulation MLC phosphorylation mediate intestinal barrier dysfunction during simulated microgravity injury. Our results also indicate that regulation of epithelial MLCK is a potential target for the therapeutic treatment of microgravity injury.
Collapse
Affiliation(s)
- Shibo Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - George Q Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jun-Lae Cho
- Centre for Advanced Food Enginomics, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
8
|
Hernandez-Gordillo V, Kassis T, Lampejo A, Choi G, Gamboa ME, Gnecco JS, Brown A, Breault DT, Carrier R, Griffith LG. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 2020; 254:120125. [PMID: 32502894 DOI: 10.1016/j.biomaterials.2020.120125] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
Epithelial organoids derived from human donor tissues are important tools in fields ranging from regenerative medicine to drug discovery. Organoid culture requires expansion of stem/progenitor cells in Matrigel, a tumor-derived extracellular matrix (ECM). An alternative completely synthetic ECM could improve reproducibility, clarify mechanistic phenomena, and enable human implantation of organoids. We designed synthetic ECMs with tunable biomolecular and biophysical properties to identify gel compositions supporting human tissue-derived stem/progenitor epithelial cells as enteroids and organoids starting with single cells rather than tissue fragments. The synthetic ECMs consist of 8-arm PEG-macromers modified with ECM-binding peptides and different combinations of integrin-binding peptides, crosslinked with peptides susceptible to matrix metalloprotease (MMP) degradation, and tuned to exhibit a range of biophysical properties. A gel containing an α2β1 integrin-binding peptide (GFOGER) and matrix binder peptides grafted to a 20 kDa 8-arm PEG macromer showed the most robust support of human duodenal and colon enteroids and endometrial organoids. In this synthetic ECM, human intestinal enteroids and endometrial organoids emerge from single cells and show cell-specific and apicobasal polarity markers upon differentiation. Intestinal enteroids, in addition, retain their proliferative capacity, are functionally responsive to basolateral stimulation, express canonical markers of intestinal crypt cells including Paneth cells, and can be serially passaged. The success of this synthetic ECM in supporting human postnatal organoid culture from multiple different donors and from both the intestine and endometrium suggests it may be broadly useful for other epithelial organoid culture.
Collapse
Affiliation(s)
- Victor Hernandez-Gordillo
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Timothy Kassis
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Arinola Lampejo
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - GiHun Choi
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Mario E Gamboa
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Juan S Gnecco
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - Alexander Brown
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| | - David T Breault
- Deparment of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 208 Lake Hall, Boston, MA, 02115, USA
| | - Linda G Griffith
- Center for Gynepathology Research and Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Beaulieu JF. Integrin α6β4 in Colorectal Cancer: Expression, Regulation, Functional Alterations and Use as a Biomarker. Cancers (Basel) 2019; 12:41. [PMID: 31877793 PMCID: PMC7016599 DOI: 10.3390/cancers12010041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Integrin α6β4 is one of the main laminin receptors and is primarily expressed by epithelial cells as an active component of hemidesmosomes. In this article, after a brief summary about integrins in the gut epithelium in general, I review the knowledge and clinical potential of this receptor in human colorectal cancer (CRC) cells. Most CRC cells overexpress both α6 and β4 subunits, in situ in primary tumours as well as in established CRC cell lines. The mechanisms that lead to overexpression have not yet been elucidated but clearly involve specific transcription factors such as MYC. From a functional point of view, one key element affecting CRC cell behaviour is the relocalization of α6β4 to the actin cytoskeleton, favouring a more migratory and anoikis-resistant phenotype. Another major element is its expression under various molecular forms that have the distinct ability to interact with ligands (α6β4 ± ctd) or to promote pro- or anti-proliferative properties (α6Aβ4 vs. α6Bβ4). The integrin α6β4 is thus involved in most steps susceptible to participation with CRC progression. The potential clinical significance of this integrin has begun to be investigated and recent studies have shown that ITGA6 and ITGB4 can be useful biomarkers for CRC early detection in a non-invasive assay and as a prognostic factor, respectively.
Collapse
Affiliation(s)
- Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; ; Tel.: +1-819-821-8000 (ext. 75269)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2019; 69:325-336. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.
Collapse
|
11
|
Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Non-integrin laminin receptors in epithelia. Tissue Cell 2019; 56:71-78. [DOI: 10.1016/j.tice.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
|
12
|
Beauséjour M, Boutin A, Vachon PH. Anoikis Regulation: Complexities, Distinctions, and Cell Differentiation. APOPTOSIS AND BEYOND 2018:145-182. [DOI: 10.1002/9781119432463.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Groulx JF, Boudjadi S, Beaulieu JF. MYC Regulates α6 Integrin Subunit Expression and Splicing Under Its Pro-Proliferative ITGA6A Form in Colorectal Cancer Cells. Cancers (Basel) 2018; 10:42. [PMID: 29401653 PMCID: PMC5836074 DOI: 10.3390/cancers10020042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
The α6 integrin subunit (ITGA6) pre-mRNA undergoes alternative splicing to form two splicing variants, named ITGA6A and ITGA6B. In primary human colorectal cancer cells, the levels of both ITGA6 and β4 integrin subunit (ITGB4) subunits of the α6β4 integrin are increased. We previously found that the upregulation of ITGA6 is a direct consequence of the increase of the pro-proliferative ITGA6A variant. However, the mechanisms that control ITGA6 expression and splicing into the ITGA6A variant over ITGA6B in colorectal cancer cells remain poorly understood. Here, we show that the promoter activity of the ITGA6 gene is regulated by MYC. Pharmacological inhibition of MYC activity with the MYC inhibitor (MYCi) 10058-F4 or knockdown of MYC expression by short hairpin RNA (shRNA) both lead to a decrease in ITGA6 and ITGA6A levels in colorectal cancer cells, while overexpression of MYC enhances ITGA6 promoter activity. We also found that MYC inhibition decreases the epithelial splicing regulatory protein 2 (ESRP2) splicing factor at both the mRNA and protein levels. Chromatin immunoprecipitation revealed that the proximal promoter sequences of ITGA6 and ESRP2 were occupied by MYC and actively transcribed in colorectal cancer cells. Furthermore, expression studies in primary colorectal tumors and corresponding resection margins confirmed that the up-regulation of the ITGA6A subunit can be correlated with the increase in MYC and ESRP2. Taken together, our results demonstrate that the proto-oncogene MYC can regulate the promoter activation and splicing of the ITGA6 integrin gene through ESRP2 to favor the production of the pro-proliferative ITGA6A variant in colorectal cancer cells.
Collapse
Affiliation(s)
- Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Laboratory of Pathology, Cancer Molecular Pathology Section, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
14
|
Chen J, Lou Q, He L, Wen C, Lin M, Zhu Z, Wang F, Huang L, Lan W, Iwamoto A, Yang X, Liu H. Reduced-gliotoxin induces ROS-mediated anoikis in human colorectal cancer cells. Int J Oncol 2018; 52:1023-1032. [PMID: 29393399 DOI: 10.3892/ijo.2018.4264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/30/2018] [Indexed: 11/06/2022] Open
Abstract
Reduced-gliotoxin is a small molecule derived from the secondary metabolites of marine fungi; compared to other gliotoxin analogues, it exhibits potent anticancer effects. However, the molecular basis of the death of colorectal cancer (CRC) cells induced by reduced-gliotoxin is unclear. Thus, the aim of this study was to investigate the potency of reduced-gliotoxin against CRC cells and to elucidate the underlying mechanisms. Cell morphology, flow cytometric analysis and western bolt analysis were performed to examine the functions and mechanisms of cell death induced by reduced-gliotoxin. Our findings demonstrated that reduced-gliotoxin triggered rapid cell detachment and induced anoikis in CRC cells. Mechanistically, our data indicated that the anoikis induced by reduced-gliotoxin was associated with the disruption of integrin-associated cell detachment and multiple signaling pathways. Furthermore, reduced-gliotoxin induced the excessive production of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP), resulting in the activation of both endogenous and exogenous apoptotic pathways and eventually, in the apoptosis of CRC cells. The blockage of ROS generation with N-acetylcysteine (NAC) attenuated the anoikis induced by reduced-gliotoxin. Taken together, these results suggest that reduced-gliotoxin may prove to be a potential candidate in the treatment of CRC.
Collapse
Affiliation(s)
- Junxiong Chen
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qiong Lou
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lu He
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chuangyu Wen
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Mengmeng Lin
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zefeng Zhu
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Fang Wang
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lanlan Huang
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wenjian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Aikichi Iwamoto
- Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Huanliang Liu
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
15
|
Herring E, Kanaoka S, Tremblay É, Beaulieu JF. Droplet digital PCR for quantification of ITGA6 in a stool mRNA assay for the detection of colorectal cancers. World J Gastroenterol 2017; 23:2891-2898. [PMID: 28522907 PMCID: PMC5413784 DOI: 10.3748/wjg.v23.i16.2891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/14/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the use of droplet digital polymerase chain reaction (ddPCR) for detecting host mRNA markers in stools as a non-invasive test for colorectal cancer screening. METHODS ddPCR and quantitative PCR were compared side by side for their performance in the detection of ITGA6 and ITGA6A transcripts in stool samples obtained from patients with various types of colorectal lesions (advanced adenomas and stage II-IV colorectal cancers) and control (patients displaying no pathological findings) using duplex TaqMan reactions for both methods. ITGA6 and ITGA6A were chosen for this proof-of-concept study based on their relative medium and low abundance in stool samples, respectively, as established in a previous study. RESULTS We found that the ddPCR and qPCR methods performed equally well in this TaqMan duplex assay for the detection of ITGA6 and ITGA6A transcripts in stools of patients with colorectal lesions. For ITGA6, receiver operating characteristic (ROC) curve analysis showed comparable areas under the curve of 0.91 (P < 0.0001) and 0.89-0.90 (P < 0.0001) for the prediction of advanced adenomas and colorectal cancers, respectively. ITGA6A, which was detected at very low levels in control patients, was found to be significantly elevated (over 40 times) in stage II and III colorectal cancers (P < 0.0002). Comparison of the two sets of data revealed a strong correlation of the copy numbers obtained by ddPCR and qPCR for both ITGA6 and ITGA6A. CONCLUSION We found that ITGA6 and ITGA6A detection in stools of patients with colorectal cancers with ddPCR is comparable to that of qPCR using TaqMan assays.
Collapse
|
16
|
Villegas-Pineda JC, Toledo-Leyva A, Osorio-Trujillo JC, Hernández-Ramírez VI, Talamás-Rohana P. The translational blocking of α5 and α6 integrin subunits affects migration and invasion, and increases sensitivity to carboplatin of SKOV-3 ovarian cancer cell line. Exp Cell Res 2017; 351:127-134. [PMID: 28131812 DOI: 10.1016/j.yexcr.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/05/2017] [Accepted: 01/21/2017] [Indexed: 01/02/2023]
Abstract
Epithelial ovarian cancer is the most lethal gynecologic malignancy. Integrins, overexpressed in cancer, are involved in various processes that favor the development of the disease. This study focused on determining the degree of involvement of α5, α6 and β3 integrin subunits in the establishment/development of epithelial ovarian cancer (EOC), such as proliferation, migration, invasion, and response to carboplatin. The translation of the α5, α6 and β3 integrins was blocked using morpholines, generating morphant cells for these proteins, which were corroborated by immunofluorescence assays. WST-1 proliferation assay showed that silencing of α5, α6, and β3 integrins does not affect the survival of morphants. Wound healing and transwell chamber assays showed that blocking α5 and α6 integrins decrease, in lesser and greater level respectively, the migratory and the invasive capacity of SKOV-3 cells. Finally, blocking α5 and α6 integrins partially sensitized the cells response to carboplatin, while blocking integrin β3 generated resistance to this drug. Statistical analyses were performed with the GraphPad Prism 5.0 software employing one way and two-way ANOVA tests; data are shown as average±SD. Results suggest that α5 and α6 integrins could become good candidates for chemotherapy targets in EOC.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Alfredo Toledo-Leyva
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Juan Carlos Osorio-Trujillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México 07360, Mexico.
| |
Collapse
|
17
|
Lee SS, Lee SJ, Lee SH, Ryu JM, Lim HS, Kim JS, Song EJ, Jung YH, Lee HJ, Kim CH, Han HJ. Netrin-1-Induced Stem Cell Bioactivity Contributes to the Regeneration of Injured Tissues via the Lipid Raft-Dependent Integrin α6β4 Signaling Pathway. Sci Rep 2016; 6:37526. [PMID: 27881869 PMCID: PMC5121594 DOI: 10.1038/srep37526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
Netrin-1 (Ntn-1) is a multifunctional neuronal signaling molecule; however, its physiological significance, which improves the tissue-regeneration capacity of stem cells, has not been characterized. In the present study, we investigate the mechanism by which Ntn-1 promotes the proliferation of hUCB-MSCs with regard to the regeneration of injured tissues. We found that Ntn-1 induces the proliferation of hUCB-MSCs mainly via Inα6β4 coupled with c-Src. Ntn-1 induced the recruitment of NADPH oxidases and Rac1 into membrane lipid rafts to facilitate ROS production. The Inα6β4 signaling of Ntn-1 through ROS production is uniquely mediated by the activation of SP1 for cell cycle progression and the transcriptional occupancy of SP1 on the VEGF promoter. Moreover, Ntn-1 has the ability to induce the F-actin reorganization of hUCB-MSCs via the Inα6β4 signaling pathway. In an in vivo model, transplantation of hUCB-MSCs pre-treated with Ntn-1 enhanced the skin wound healing process, where relatively more angiogenesis was detected. The potential effect of Ntn-1 on angiogenesis is further verified by the mouse hindlimb ischemia model, where the pre-activation of hUCB-MSCs with Ntn-1 significantly improved vascular regeneration. These results demonstrate that Ntn-1 plays an important role in the tissue regeneration process of hUCB-MSC via the lipid raft-mediated Inα6β4 signaling pathway.
Collapse
Affiliation(s)
- Soo Sang Lee
- Department of plastic and reconstructive surgery, Bundang CHA Medical Center, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.,SKY plastic surgery clinic, 4F, 826-23, Yeoksam-dong, Gangnam-gu, Seoul, Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon Su Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Eun Ju Song
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Chung Hun Kim
- Department of plastic and reconstructive surgery, Bundang CHA Medical Center, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
Aung W, Tsuji AB, Sudo H, Sugyo A, Ukai Y, Kouda K, Kurosawa Y, Furukawa T, Saga T. Radioimmunotherapy of pancreatic cancer xenografts in nude mice using 90Y-labeled anti-α6β4 integrin antibody. Oncotarget 2016; 7:38835-38844. [PMID: 27246980 PMCID: PMC5122433 DOI: 10.18632/oncotarget.9631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
The contribution of integrin α6β4 (α6β4) overexpression to the pancreatic cancer invasion and metastasis has been previously shown. We have reported immunotargeting of α6β4 for radionuclide-based and near-infrared fluorescence imaging in a pancreatic cancer model. In this study, we prepared yttrium-90 labeled anti-α6β4 antibody (90Y-ITGA6B4) and evaluated its radioimmunotherapeutic efficacy against pancreatic cancer xenografts in nude mice. Mice bearing xenograft tumors were randomly divided into 5 groups: (1) single administration of 90Y-ITGA6B4 (3.7MBq), (2) double administrations of 90Y-ITGA6B4 with once-weekly schedule (3.7MBq x 2), (3) single administration of unlabeled ITGA6B4, (4) double administrations of unlabeled ITGA6B4 with once-weekly schedule and (5) the untreated control. Biweekly tumor volume measurements and immunohistochemical analyses of tumors at 2 days post-administration were performed to monitor the response to treatments. To assess the toxicity, body weight was measured biweekly. Additionally, at 27 days post-administration, blood samples were collected through cardiac puncture, and hematological parameters, hepatic and renal functions were analyzed. Both 90Y-ITGA6B4 treatment groups showed reduction in tumor volumes (P < 0.04), decreased cell proliferation marker Ki-67-positive cells and increased DNA damage marker p-H2AX-positive cells, compared with the other groups. Mice treated with double administrations of 90Y-ITGA6B4, exhibited myelosuppression. There were no significant differences in hepatic and renal functions between the 2 treatment groups and the other groups. Our results suggest that 90Y-ITGA6B4 is a promising radioimmunotherapeutic agent against α6β4 overexpressing tumors. In the future studies, dose adjustment for fractionated RIT should be considered carefully in order to get the optimal effect while avoiding myelotoxicity.
Collapse
Affiliation(s)
- Winn Aung
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Atsushi B. Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University, Toyoake, Japan
| | - Takako Furukawa
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
19
|
Tai YL, Lai IR, Peng YJ, Ding ST, Shen TL. Activation of focal adhesion kinase through an interaction with β4 integrin contributes to tumorigenicity of colon cancer. FEBS Lett 2016; 590:1826-37. [PMID: 27178753 DOI: 10.1002/1873-3468.12215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023]
Abstract
High expression of either β4 integrin or focal adhesion kinase (FAK) has been reported in human colon cancer. However, it remains unclear how β4 integrin together with FAK contributes to the tumorigenicity of colon cancer. Here, we demonstrate that the co-overexpression of β4 integrin and FAK positively correlates with advanced stages of human colon cancer. Activated β4 integrin interacts with FAK and subsequently induces FAK phosphorylation at Tyr397. Furthermore, ablation of the β4 integrin/FAK complex and/or FAK activation impair colon cancer cell proliferation, anchorage-independent growth, and tumorigenicity. Our data indicate that the β4 integrin/FAK complex and subsequent FAK activation are essential regulators during the tumorigenicity of colon cancer, and we suggest an alternative strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Rue Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Boudjadi S, Carrier JC, Groulx JF, Beaulieu JF. Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells. Oncogene 2016; 35:1671-1678. [PMID: 26096932 PMCID: PMC4820680 DOI: 10.1038/onc.2015.231] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/15/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
Abstract
The α1β1 collagen receptor is only present in a few epithelial cell types. In the intestine, it is specifically expressed in proliferating crypt cells. This integrin has been reported to be involved in various cancers where it mediates the downstream activation of the Ras/ERK proliferative pathway. We have recently shown that integrin α1β1 is present in two-thirds of colon adenocarcinomas, but the mechanism by which ITGA1 expression is regulated is not known. DNA methylation, involved in ITGA1 repression during megakaryocyte differentiation, is not the mechanism of ITGA1 regulation in colorectal cancer cells. Our in silico analysis of the ITGA1 promoter revealed two response elements for MYC, an oncogenic factor known to regulate cancer cell proliferation, invasion and migration. In situ, the expressions of both MYC and ITGA1 are localized in the lower crypt of the normal colon and correlate in 72% of the 65 analyzed colorectal cancers. MYC pharmacological inhibition or downregulation of expression with short hairpin RNA in HT29, T84 and SW480 cells resulted in reduced ITGA1 expression at both the transcript and protein levels. Chromatin immunoprecipitation assays revealed that MYC was bound to the chromatin region of the ITGA1 proximal promoter, whereas MYC overexpression enhanced ITGA1 promoter activity that was reduced with MAD co-transfection or by the disruption of the response elements. We concluded that MYC is a key regulating factor for the control of ITGA1 expression.
Collapse
Affiliation(s)
- S Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J C Carrier
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J-F Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J-F Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
21
|
Aung W, Tsuji AB, Sudo H, Sugyo A, Furukawa T, Ukai Y, Kurosawa Y, Saga T. Immunotargeting of Integrin α6β4 for Single-Photon Emission Computed Tomography and Near-Infrared Fluorescence Imaging in a Pancreatic Cancer Model. Mol Imaging 2016; 15:1536012115624917. [PMID: 27030400 PMCID: PMC5469600 DOI: 10.1177/1536012115624917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/15/2022] Open
Abstract
To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4with Indium-111 ((111)In) or indocyanine green (ICG). After injection of(111)In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of(111)In-labeled probe, ARG, and IHC confirmed the α6β4specific binding of the probe. Here, we propose that α6β4is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4antibody.
Collapse
Affiliation(s)
- Winn Aung
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Takako Furukawa
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University, Toyoake, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
22
|
Villegas-Pineda JC, Garibay-Cerdenares OL, Hernández-Ramírez VI, Gallardo-Rincón D, Cantú de León D, Pérez-Montiel-Gómez MD, Talamás-Rohana P. Integrins and haptoglobin: Molecules overexpressed in ovarian cancer. Pathol Res Pract 2015; 211:973-81. [DOI: 10.1016/j.prp.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
23
|
Moilanen JM, Kokkonen N, Löffek S, Väyrynen JP, Syväniemi E, Hurskainen T, Mäkinen M, Klintrup K, Mäkelä J, Sormunen R, Bruckner-Tuderman L, Autio-Harmainen H, Tasanen K. Collagen XVII expression correlates with the invasion and metastasis of colorectal cancer. Hum Pathol 2015; 46:434-42. [PMID: 25623077 DOI: 10.1016/j.humpath.2014.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/05/2014] [Accepted: 11/27/2014] [Indexed: 01/28/2023]
Abstract
Collagen XVII has a well-established role as an adhesion molecule and a cell surface receptor located in the type I hemidesmosome of stratified epithelia. Its ectodomain is constitutively shed from the cell surface and suggested to regulate the adhesion, migration, and signaling of cutaneous epithelial cells. Collagen XVII was not previously thought to be expressed by colon epithelial cells. Immunohistochemical analysis of tissue microarray samples of 141 cases of colorectal carcinoma showed that collagen XVII is expressed in normal human colonic mucosa and colorectal carcinoma. In colorectal carcinoma, increased collagen XVII expression was significantly associated with higher TNM stage. It also correlated with infiltrative growth pattern and tumor budding as well as lymph node and distant metastasis. Increased collagen XVII expression was associated with decreased disease-free and cancer-specific survival. Immunofluorescence staining of collagen XVII and its well-known binding partner laminin γ2 chain demonstrated a partial colocalization in normal and tumor tissue. In vitro, the overexpression of murine collagen XVII promoted the invasion of CaCo-2 colon carcinoma cells through Matrigel (BD Biosciences; Bedford, MA). To conclude, this study reports for the first time the expression of collagen XVII in colon epithelium and the association of increased collagen XVII immunoexpression with poor outcome in colorectal carcinoma.
Collapse
Affiliation(s)
- Jyri M Moilanen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland
| | - Nina Kokkonen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Juha P Väyrynen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Erkki Syväniemi
- Department of Pathology, Kainuu Central Hospital, FIN-87140, Kajaani, Finland
| | - Tiina Hurskainen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland
| | - Markus Mäkinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Kai Klintrup
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Surgery, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Jyrki Mäkelä
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland; Department of Surgery, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Raija Sormunen
- Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland; Biocenter Oulu, FIN-90220, Oulu, Finland
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center Freiburg and Freiburg Institute of Advanced Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Helena Autio-Harmainen
- Department of Pathology, University of Oulu and Oulu University Hospital, FIN-90220, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology and Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90220, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90220, Oulu, Finland.
| |
Collapse
|
24
|
Soejima Y, Inoue M, Takahashi Y, Uozaki H, Sawabe M, Fukusato T. Integrins αvβ6, α6β4 and α3β1 are down-regulated in cholangiolocellular carcinoma but not cholangiocarcinoma. Hepatol Res 2014; 44:E320-34. [PMID: 24552196 DOI: 10.1111/hepr.12312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
AIM The aim of this study was to evaluate integrin expression and immunolocalization of the extracellular matrix proteins in cholangiolocellular carcinoma (CoCC). METHODS Tissue specimens of 23 CoCC, 28 cholangiocarcinomas (CCC), 42 hepatocellular carcinomas (HCC) and 11 classical type combined hepatocellular cholangiocarcinomas (CHC) were immunostained for β6, β4 and α3 integrins, fibronectin and laminin. ITGB6, B4 and A3 mRNA levels in six HCC cell lines, five CCC cell lines and two CHC cell lines were quantified by quantitative reverse transcription polymerase chain reaction. RESULTS Little or no positivity for β6, β4 and α3 integrins was shown in 91%, 91% and 52% of CoCC and 100%, 98% and 81% of HCC, respectively, according to immunostaining, whereas intense positive staining for these integrins was demonstrated in 64%, 96% and 75% of CCC, respectively. There was a close correlation between β4 and α3 integrin expression and intracytoplasmic laminin in CoCC, CCC and HCC, but not between β6 expression and its ligand, fibronectin. Integrin mRNA levels were increased in four of five CCC cell lines, but nearly undetectable in five of six HCC cell lines and one CHC cell line. Tubular differentiation of a CHC cell line cultured in collagen gel matrix induced upregulation of these integrins. CONCLUSION Our results first indicated downregulation of αvβ6, α6β4 and α3β1 integrins in CoCC, in contrast to its high expression in CCC, suggesting a diagnostic value of integrins in the differential diagnosis of CoCC and CCC, as well as a useful inducible marker of the intermediate features of CoCC.
Collapse
Affiliation(s)
- Yurie Soejima
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan; Department of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Kulkarni RM, Stuart WD, Gurusamy D, Waltz SE. Ron receptor signaling is protective against DSS-induced colitis in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1065-74. [PMID: 24742989 PMCID: PMC4059975 DOI: 10.1152/ajpgi.00421.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the intestine that result in painful and debilitating complications. Currently no cure exists for IBD, and treatments are primarily aimed at reducing inflammation to alleviate symptoms. Genome-wide linkage studies have identified the Ron receptor tyrosine kinase (TK) and its ligand, hepatocyte growth factor-like protein (HGFL), as genes highly associated with IBD. However, only scant information exists on the role of Ron or HGFL in IBD. Based on the linkage of Ron to IBD, we directly examined the biological role of Ron in colitis. Wild-type mice and mice lacking the TK signaling domain of Ron (TK-/- mice) were utilized in a well-characterized model of chronic colitis induced by cyclic exposure to dextran sulfate sodium. In this model, TK-/- mice were more susceptible to injury as judged by increased mortality compared with control mice and developed more severe colitis. Loss of Ron led to significantly reduced body weights and more aggressive clinical and histopathologies. Ron loss also resulted in a dramatic reduction in colonic epithelial cell proliferation and increased proinflammatory cytokine production, which was associated with alterations in important signaling pathways known to regulate IBD. Examination of human gene expression data further supports the contention that loss of Ron signaling is associated with IBD. In total, our studies point to important functional roles for Ron in IBD by regulating healing of the colonic epithelium and by controlling cytokine secretion.
Collapse
Affiliation(s)
| | - William D. Stuart
- 1Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio; and
| | - Devikala Gurusamy
- 1Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio; and
| | - Susan E. Waltz
- 1Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio; and ,2Department of Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
26
|
Groulx JF, Giroux V, Beauséjour M, Boudjadi S, Basora N, Carrier JC, Beaulieu JF. Integrin α6A splice variant regulates proliferation and the Wnt/β-catenin pathway in human colorectal cancer cells. Carcinogenesis 2014; 35:1217-1227. [PMID: 24403311 PMCID: PMC4043246 DOI: 10.1093/carcin/bgu006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/30/2013] [Accepted: 12/15/2013] [Indexed: 12/13/2022] Open
Abstract
The integrin α6 subunit pre-messenger RNA undergoes alternative splicing to generate two different splice variants, named α6A and α6B, having distinct cytoplasmic domains. In the human colonic gland, these splice variants display different patterns of expression suggesting specific functions for each variant. We have previously found an up-regulation of the α6β4 integrin in colon adenocarcinomas as well as an increase in the α6A/α6B ratio, but little is known about the involvement of α6Aβ4 versus α6Bβ4 in this context. The aim of this study was to elucidate the function of the α6Aβ4 integrin in human colorectal cancer (CRC) cells. Expression studies on a panel of primary CRCs confirmed that the up-regulation of the α6 subunit in CRC is a direct consequence of the increase of the α6A variant. To investigate the functional significance of an α6A up-regulation in CRC, we specifically knocked down its expression in well-established CRC cell lines using a small-hairpin RNA approach. Results showed a growth rate reduction in all α6A knockdown CRC cell lines studied. The α6A silencing was also found to be associated with a significant repression of a number of Wnt/β-catenin pathway end points. Moreover, it was accompanied by a reduction in the capacity of these cells to develop tumours in xenografts. Taken together, these results demonstrate that the α6A variant is a pro-proliferative form of the α6 integrin subunit in CRC cells and appears to mediate its effects through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology and Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Véronique Giroux
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Marco Beauséjour
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology and Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology and Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology and Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology and Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
27
|
Beauséjour M, Thibodeau S, Demers MJ, Bouchard V, Gauthier R, Beaulieu JF, Vachon PH. Suppression of anoikis in human intestinal epithelial cells: differentiation state-selective roles of α2β1, α3β1, α5β1, and α6β4 integrins. BMC Cell Biol 2013; 14:53. [PMID: 24289209 PMCID: PMC4219346 DOI: 10.1186/1471-2121-14-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022] Open
Abstract
Background Regulation of anoikis in human intestinal epithelial cells (IECs) implicates differentiation state-specific mechanisms. Human IECs express distinct repertoires of integrins according to their state of differentiation. Therefore, we investigated whether α2β1, α3β1, α5β1, and α6β4 integrins perform differentiation state-specific roles in the suppression of IEC anoikis. Results Human (HIEC, Caco-2/15) IECs were exposed to specific antibodies that block the binding activity of integrin subunits (α2, α3, α5, α6, β1 or β4) to verify whether or not their inhibition induced anoikis. The knockdown of α6 was also performed by shRNA. Additionally, apoptosis/anoikis was induced by pharmacological inhibition of Fak (PF573228) or Src (PP2). Anoikis/apoptosis was assayed by DNA laddering, ISEL, and/or caspase activity (CASP-8, -9, or -3). Activation levels of Fak and Src, as well as functional Fak-Src interactions, were also assessed. We report herein that differentiated IECs exhibit a greater sensitivity to anoikis than undifferentiated ones. This involves an earlier onset of anoikis when kept in suspension, as well as significantly greater contributions from β1 and β4 integrins in the suppression of anoikis in differentiated cells, and functional distinctions between β1 and β4 integrins in engaging both Fak and Src, or Src only, respectively. Likewise, Fak performs significantly greater contributions in the suppression of anoikis in differentiated cells. Additionally, we show that α2β1 and α5β1 suppress anoikis in undifferentiated cells, whereas α3β1 does so in differentiated ones. Furthermore, we provide evidence that α6β4 contributes to the suppression of anoikis in a primarily α6 subunit-dependent manner in undifferentiated cells, whereas this same integrin in differentiated cells performs significantly greater contributions in anoikis suppression than its undifferentiated state-counterpart, in addition to doing so through a dependence on both of its subunits. Conclusions Our findings indicate that the suppression of human IEC anoikis implicates differentiation state-selective repertoires of integrins, which in turn results into distinctions in anoikis regulation, and sensitivity, between undifferentiated and differentiated IECs. These data further the functional understanding of the concept that the suppression of anoikis is subjected to cell differentiation state-selective mechanisms.
Collapse
Affiliation(s)
- Marco Beauséjour
- Département d'anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, J1H5N4 Sherbrooke, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V, Vlassi M, Spyridakis Y, Tsipras I, Zografos G, Pintzas A. Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGΒ4-PDCD4) as predictor of metastatic tumor potential. Epigenetics 2013; 9:129-41. [PMID: 24149370 DOI: 10.4161/epi.26842] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Previous studies have uncovered several transcription factors that determine biological alterations in tumor cells to execute the invasion-metastasis cascade, including the epithelial-mesenchymal transition (EMT). We sought to investigate the role of miR-21 in colorectal cancer regulation. For this purpose, miR-21 expression was quantified in a panel of colorectal cancer cell lines and clinical specimens. High expression was found in cell lines with EMT properties and in the vast majority of human tumor specimens. We demonstrate in a cell-specific manner the occupancy of MIR-21 gene promoter by AP-1 and ETS1 transcription factors and, for the first time, the pattern of histone posttranslational modifications necessary for miR-21 overexpression. We also show that Integrin-β4 (ITGβ4), exclusively expressed in polarized epithelial cells, is a novel miR-21 target gene and plays a role in the regulation of EMT, since it is remarkably de-repressed after transient miR-21 silencing and downregulated after miR-21 overexpression. miR-21-dependent change of ITGβ4 expression significantly affects cell migration properties of colon cancer cells. Finally, in a subgroup of tumor specimens, ROC curve analysis performed on quantitative PCR data sets for miR-21, ITGβ4, and PDCD4 shows that the combination of high miR-21 with low ITGβ4 and PDCD4 expression is able to predict presence of metastasis. In conclusion, miR-21 is a key player in oncogenic EMT, its overexpression is controlled by the cooperation of genetic and epigenetic alterations, and its levels, along with ITGβ4 and PDCD4 expression, could be exploited as a prognostic tool for CRC metastasis.
Collapse
Affiliation(s)
- Angelo Ferraro
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Christos K Kontos
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Themis Boni
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Ioannis Bantounas
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Dimitra Siakouli
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Vivian Kosmidou
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Margarita Vlassi
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| | - Yannis Spyridakis
- 3rd Department of Surgery; General Hospital of Athens G. Gennimatas; Athens, Greece
| | - Iraklis Tsipras
- 3rd Department of Surgery; General Hospital of Athens G. Gennimatas; Athens, Greece
| | - George Zografos
- 3rd Department of Surgery; General Hospital of Athens G. Gennimatas; Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression; Institute of Biology, Medicinal Chemistry and Biotechnology; National Hellenic Research Foundation; Athens, Greece
| |
Collapse
|
29
|
Kwon J, Lee TS, Lee HW, Kang MC, Yoon HJ, Kim JH, Park JH. Integrin alpha 6: a novel therapeutic target in esophageal squamous cell carcinoma. Int J Oncol 2013; 43:1523-30. [PMID: 24042193 DOI: 10.3892/ijo.2013.2097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/16/2013] [Indexed: 11/06/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), the most common subtype of esophageal cancer in East Asian countries, is a devastating disease characterized by distinctly high incidence and mortality rates. Our previous expression profile analysis showed that integrin alpha 6 (ITGA6) is highly expressed in ESCC tissues. To validate cell surface expression of ITGA6 as a novel target in ESCC, we investigated ITGA6 expression in tumor tissue samples and cell lines of ESCC and found that ITGA6 was upregulated in these cells. In vitro knockdown of ITGA6 in ESCC cells resulted in inhibition of cell proliferation, invasion and colony formation. In addition, we demonstrated that ITGA6 associates with integrin beta 4 (ITGB4), and that this heterodimer complex is upregulated in both ESCC tissues and cell lines. Moreover, our biodistribution results in an ESCC xenograft model indicated that ITGA6 is a possible target for antibody-related diagnostic and therapeutic modalities in ESCC. Thus, our findings suggest that ITGA6 plays an important role in tumorigenesis in ESCC and represents a potential therapeutic target in the treatment of ESCC.
Collapse
Affiliation(s)
- Junhye Kwon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Khalfaoui T, Groulx JF, Sabra G, GuezGuez A, Basora N, Vermette P, Beaulieu JF. Laminin receptor 37/67LR regulates adhesion and proliferation of normal human intestinal epithelial cells. PLoS One 2013; 8:e74337. [PMID: 23991217 PMCID: PMC3750003 DOI: 10.1371/journal.pone.0074337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022] Open
Abstract
Interactions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR) is one of these but its role in normal epithelial cells is still unknown. The aim of this study was to characterise the expression pattern and determine the main function of 37/67LR in the normal human small intestinal epithelium. Immunolocalization studies revealed that 37/67LR was predominantly present in the undifferentiated/proliferative region of the human intestinal crypt in both the immature and adult intestine. Using a human intestinal epithelial crypt (HIEC) cell line as experimental model, we determined that 37/67LR was expressed in proliferative cells in both the cytoplasmic and membrane compartments. Small-interfering RNA-mediated reduction of 37/67LR expression led to HIEC cell-cycle reduction and loss of the ability to adhere to laminin-related peptides under conditions not altering ribosomal function. Taken together, these findings indicate that 37/67LR regulates proliferation and adhesion in normal intestinal epithelial cells independently of its known association with ribosomal function.
Collapse
Affiliation(s)
- Taoufik Khalfaoui
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Georges Sabra
- Laboratory of Bioengineering and Biophysics, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Amel GuezGuez
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Vermette
- Laboratory of Bioengineering and Biophysics, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
31
|
Tiwari A, Schneider M, Fiorino A, Haider R, Okoniewski MJ, Roschitzki B, Uzozie A, Menigatti M, Jiricny J, Marra G. Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors. PLoS One 2013; 8:e69473. [PMID: 23936024 PMCID: PMC3720655 DOI: 10.1371/journal.pone.0069473] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022] Open
Abstract
We previously reported that the expression of KIAA1199 in human colorectal tumors (benign and malignant) is markedly higher than that in the normal colonic mucosa. In this study, we investigated the functions of the protein encoded by this gene, which are thus far unknown. Immunostaining studies were used to reveal its subcellular localization, and proteomic and gene expression experiments were conducted to identify proteins that might interact with KIAA1199 and molecular pathways in which it might play roles. Using colon cancer cell lines, we showed that both endogenous and ectopically expressed KIAA1199 is secreted into the extracellular environment. In the cells, it was found mainly in the perinuclear space (probably the ER) and cell membrane. Both cellular compartments were also over-represented in lists of proteins identified by mass spectrometry as putative KIAA1199 interactors and/or proteins encoded by genes whose transcription was significantly changed by KIAA1199 expression. These proteomic and transcriptomic datasets concordantly link KIAA1199 to several genes/proteins and molecular pathways, including ER processes like protein binding, transport, and folding; and Ca2+, G-protein, ephrin, and Wnt signaling. Immunoprecipitation experiments confirmed KIAA1199’s interaction with the cell-membrane receptor ephrin A2 and with the ER receptor ITPR3, a key player in Ca2+ signaling. By modulating Ca2+ signaling, KIAA1199 could affect different branches of the Wnt network. Our findings suggest it may negatively regulate the Wnt/CTNNB1 signaling, and its expression is associated with decreased cell proliferation and invasiveness.
Collapse
Affiliation(s)
- Amit Tiwari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mirjam Schneider
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Antonio Fiorino
- Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Ritva Haider
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Michal J. Okoniewski
- Functional Genomics Center of the ETH and University of Zurich, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center of the ETH and University of Zurich, Zurich, Switzerland
| | - Anuli Uzozie
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mirco Menigatti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Boudjadi S, Carrier JC, Beaulieu JF. Integrin α1 subunit is up-regulated in colorectal cancer. Biomark Res 2013; 1:16. [PMID: 24252313 PMCID: PMC4177608 DOI: 10.1186/2050-7771-1-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/01/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Colorectal cancer remains one of the leading causes of death from cancer in industrialized countries. Integrins are a family of heterodimeric glycoproteins involved in bidirectional cell signaling and participate in the regulation of cell shape, adhesion, migration, differentiation, gene transcription, survival and proliferation. The α1 subunit is known to be involved in RAS/ERK proliferative pathway activation and plays an important role in mammary carcinoma cell proliferation and migration. In the small intestine, α1 is present in the crypt proliferative compartment and absent in the villus, but nothing is known about its expression in the colon mucosa, or in colorectal cancer. RESULTS In the present study, we demonstrated that in the colon mucosa, α1 is present in the basolateral domain of the proliferative cells of the crypt, and in the surrounding myofibroblasts. We found higher levels of α1 mRNA in 86% of tumours compared to their corresponding matched margin tissues. Immunohistochemical analysis showed that α1 staining was moderate to high in 65% of tumour cells and 97% of the reactive cells surrounding the tumour cells vs 23% of normal epithelial cells. CONCLUSION Our findings suggest an active role for the α1β1 integrin in colorectal cancer progression.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Heath Sciences, Université de Sherbrooke, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - Julie C Carrier
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Heath Sciences, Université de Sherbrooke, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Heath Sciences, Université de Sherbrooke, 3001 12th Avenue N, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
33
|
Krause P, Flikweert H, Monin M, Seif Amir Hosseini A, Helms G, Cantanhede G, Ghadimi BM, Koenig S. Increased growth of colorectal liver metastasis following partial hepatectomy. Clin Exp Metastasis 2013; 30:681-93. [PMID: 23385555 PMCID: PMC3663204 DOI: 10.1007/s10585-013-9572-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/22/2013] [Indexed: 12/11/2022]
Abstract
Nearly 50 % of colorectal cancer (CRC) patients develop liver metastases with liver resection being the only option to cure patients. Residual micrometastases or circulating tumor cells are considered a cause of tumor relapse. This work investigates the influence of partial hepatectomy (PH) on the growth and molecular composition of CRC liver metastasis in a syngeneic rat model. One million CC531 colorectal tumor cells were implanted via the portal vein in WAG/Rij rats followed by a 30 % PH a day later. Control groups either received tumor cells followed by a sham-operation or were injected with a buffer solution followed by PH. Animals were examined with magnetic resonance imaging (MRI) and liver tissues were processed for immunolabeling and PCR analysis. One-third PH was associated with an almost threefold increase in relative tumor mass (MRI volumetry: 2.8-fold and transcript levels of CD44: 2.3-fold). Expression of molecular markers for invasiveness and aggressiveness (CD49f, CXCR4, Axin2 and c-met) was increased following PH, however with no significant differences when referring to the relative expression levels (relating to tumor mass). Liver metastases demonstrated a significantly higher proliferation rate (Ki67) 2 weeks following PH and cell divisions also increased in the surrounding liver tissue. Following PH, the stimulated growth of metastases clearly exceeded the compensation in liver volume with long-lasting proliferative effects. However, the distinct tumor composition was not influenced by liver regeneration. Future investigations should focus on the inhibition of cell cycle (i.e. systemic therapy strategies, irradiation) to hinder liver regeneration and therefore restrain tumor growth.
Collapse
Affiliation(s)
- P Krause
- Department of General and Visceral Surgery, University Medical Centre, Georg-August-University Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:738137. [PMID: 21785723 PMCID: PMC3139189 DOI: 10.1155/2011/738137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 01/06/2011] [Accepted: 03/10/2011] [Indexed: 01/01/2023]
Abstract
Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying), but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis.
Collapse
|