1
|
Jin Z, Liu YH. Metabolic-related gene signatures for survival prediction and immune cell subtypes associated with prognosis in intrahepatic cholangiocarcinoma. Cancer Genet 2023; 274-275:84-93. [PMID: 37099969 DOI: 10.1016/j.cancergen.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Our study aimed to reveal the metabolic-related gene signatures for survival prediction and immune cell subtypes associated with IHCC prognosis. METHODS Differentially expressed metabolic genes were identified between survival group and dead group which were divided according to survival at discharge. Recursive feature elimination (RFE) and randomForest (RF) algorithms were applied to optimize the combination of feature metabolic genes, which were used to generate SVM classifier. Performance of SVM classifier was evaluated by receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA) was conducted to uncover the activated pathways in high risk group, and differences in immune cell distributions were revealed. RESULTS There were 143 differentially expressed metabolic gens. RFE and RF identified 21 overlapping differentially expressed metabolic genes, and the constructed SVM classifier had excellent accuracy in training and validation dataset. RS survival prediction model was consisted of 10 metabolic genes. RS model had reliable predictive capability in the training and validation dataset. GSEA revealed 15 significant KEGG pathways that were relatively activated in the high risk group. High risk group had obviously lower counts of B cell naive and T cell CD4+ memory resting, while higher counts of B cell plasma and macrophage M2. CONCLUSION Prognostic prediction model of 10 metabolic genes could accurately predict the prognosis of IHCC patients.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, No. 1, Xinmin Street, Chaoyang District, Changchun, Jilin 130021, China
| | - Ya-Hui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, No. 1, Xinmin Street, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Kyritsi K, Chen L, O’Brien A, Francis H, Hein TW, Venter J, Wu N, Ceci L, Zhou T, Zawieja D, Gashev AA, Meng F, Invernizzi P, Fabris L, Wu C, Skill NJ, Saxena R, Liangpunsakul S, Alpini G, Glaser SS. Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidase-A/5-Hydroxytryptamine/5-Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology 2020; 71:990-1008. [PMID: 31344280 PMCID: PMC6993623 DOI: 10.1002/hep.30880] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. APPROACH AND RESULTS While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. CONCLUSIONS Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Animals
- Bile Ducts/pathology
- Cell Proliferation
- Cholangitis, Sclerosing/etiology
- Cholestasis/pathology
- Humans
- Liver Cirrhosis/etiology
- Male
- Mice
- Monoamine Oxidase/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/physiology
- Receptor, Serotonin, 5-HT2B/physiology
- Receptor, Serotonin, 5-HT2C/physiology
- Receptors, Serotonin/physiology
- Serotonin/blood
- Serotonin/physiology
- Tryptophan Hydroxylase/physiology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - April O’Brien
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Travis W. Hein
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Julie Venter
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - David Zawieja
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Anatoliy A. Gashev
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Nicholas J. Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Shannon S. Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| |
Collapse
|
3
|
Sha M, Cao J, Sun HY, Tong Y, Xia Q. Neuroendocrine regulation of cholangiocarcinoma: A status quo review. Biochim Biophys Acta Rev Cancer 2019; 1872:66-73. [PMID: 31152820 DOI: 10.1016/j.bbcan.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/19/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
Increasing studies have demonstrated that neuroendocrine system is involved in the development and progression of cholangiocarcinoma. The neuroendocrine hormones, neurotransmitters and neuropeptides regulate cholangiocarcinoma via affecting pathophysiology of tumor cells. The developing interaction and interplay between neuroendocrine-associated factors and tumor cells provide novel insights into neural control of tumorigenesis and reveal potential therapeutic effect on patients with cholangiocarcinoma. Herein we reviewed the latest findings and achievements which demonstrate the close interactions between neuroendocrine regulation and progression of cholangiocarcinoma. Also, future therapeutic approaches targeting neuroendocrine-associated factors are discussed which may help improve management and treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng Sha
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Jie Cao
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Han-Yong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Ying Tong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
4
|
Abd El Moety HA, Maharem DA, Gomaa SH. Serotonin: is it a marker for the diagnosis of hepatocellular carcinoma in cirrhotic patients? ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hoda Aly Abd El Moety
- Chemical Pathology, Medical Research Institute , Alexandria University , 16 Alexander the Great , Azarita, Alexandria, Egypt
| | - Dalia Aly Maharem
- Internal Medicine, Medical Research Institute , Alexandria University , 16 Alexander the Great , Azarita, Alexandria, Egypt
| | - Salwa Hamdy Gomaa
- Chemical Pathology, Medical Research Institute , Alexandria University , 16 Alexander the Great , Azarita, Alexandria, Egypt
| |
Collapse
|
5
|
Could serotonin be a potential marker for hepatocellular carcinoma? A prospective single-center observational study. Eur J Gastroenterol Hepatol 2016; 28:599-605. [PMID: 26741637 DOI: 10.1097/meg.0000000000000569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality among men worldwide. Serotonin is a biogenic amine, which may be involved in the tumorigenesis of HCC. AIM We aimed to determine whether serotonin is a dependable marker for the diagnosis of HCC in cirrhotic patients in comparison with α-fetoprotein protein (AFP) and prothrombin induced by vitamin K absence-II (PIVKA-II). PATIENTS AND METHODS Serum serotonin, AFP, and PIVKA-II were measured in 262 patients with chronic hepatitis C (CHC): 82 cirrhotic patients with HCC (group I), 80 cirrhotic patients without HCC (group II), and 100 CHC-infected patients without cirrhosis (group III); in addition, 60 healthy controls were studied (group IV). RESULTS AFP showed significant statistical differences among the groups studied (P<0.001). PIVKA-II and serotonin levels showed no statistically significant differences between the patients with CHC group and the healthy controls (P1=0.614 and P1=0.13, respectively), whereas their levels were statistically higher in cirrhotic patients than patients with CHC (all P values <0.001) and in the cirrhotic patients with HCC group than the cirrhotic patients without HCC (P<0.001). A significant positive correlation was found between serum serotonin and AFP (rho=0.794; P<0.001) and serum serotonin and PIVKA-II (rho=0.889; P<0.001) among the patient groups. The receiver operator characteristic curve showed a higher area under the curve for serotonin than AFP and PIVKA-II (0.942, 0.824, and 0.921, respectively). CONCLUSION Serotonin may be used together with PIVKA-II to screen for HCC in cirrhotic patients with CHC.
Collapse
|
6
|
De Domenico E, Mauceri A, Giordano D, Maisano M, Giannetto A, Parrino V, Natalotto A, D'Agata A, Cappello T, Fasulo S. Biological responses of juvenile European sea bass (Dicentrarchus labrax) exposed to contaminated sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:114-123. [PMID: 23953925 DOI: 10.1016/j.ecoenv.2013.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/21/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Multiple anthropogenic activities present along coastal environments may affect the health status of aquatic ecosystems. In this study, specimens of European sea bass (Dicentrarchus labrax) were exposed for 30 days to highly contaminated sediment collected from the industrial area between Augusta and Priolo (Syracuse, Italy), defined as the most mercury polluted site in the Mediterranean. The aim was to evaluate the responses of juvenile D. labrax to highly contaminated sediments, particularly enriched in Hg, in order to enhance the scarce knowledge on the potential compensatory mechanisms developed by organisms under severe stress conditions. Apoptotic and proliferative activities [cell turnover: Proliferating Cell Nuclear Antigen (PCNA) and FAS Ligand (FasL)], onset of hypoxic condition [hypoxia: Hypoxia Inducibile Factor-1α (HIF-1α)], and changes in the neuroendocrine control mechanisms [neurotransmission: Tyrosine Hydroxylase (TH), Choline Acetyltransferase (ChAT), Acetylcholinesterase (AChE), 5-Hydroxytryptamine (5-HT) and 5-Hydroxytryptamine receptor 3 (5-HT3)] were investigated in sea bass gill tissues. In the specimens exposed to the polluted sediment, the occurrence of altered cell turnover may result in impaired gas exchange that leads to a condition of "functional hypoxia". Changes in neurotransmission pathways were also observed, suggesting a remodeling process as an adaptive response to increase the O2-carrying capacity and restore the normal physiological conditions of the gills. Overall, these findings demonstrated that although chronic exposure to heavy metal polluted sediments alters the functioning of both the nervous and endocrine systems, as well as plasticity of the gill epithelium, fish are able to trigger a series of physiological adjustments or adaptations interfering with specific neuroendocrine control mechanisms that enable their long-term survival.
Collapse
Affiliation(s)
- Elena De Domenico
- Department of Biological and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|