1
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
2
|
Van Campenhout R, Cooreman A, Leroy K, Rusiecka OM, Van Brantegem P, Annaert P, Muyldermans S, Devoogdt N, Cogliati B, Kwak BR, Vinken M. Non-canonical roles of connexins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:35-41. [PMID: 32220599 DOI: 10.1016/j.pbiomolbio.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Gap junctions mediate cellular communication and homeostasis by controlling the intercellular exchange of small and hydrophilic molecules and ions. Gap junction channels are formed by the docking of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin subunits. Connexin proteins as such can also control the cellular life cycle independent of their channel activities. This has been most demonstrated in the context of cell growth and cell death. Different mechanisms are involved mainly related to direct interaction with cell growth or cell death regulators, but also implying effects on the expression of cell growth and cell death regulators. The present paper focuses on these atypical roles of connexin proteins.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olga M Rusiecka
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Qin J, Chang M, Wang S, Liu Z, Zhu W, Wang Y, Yan F, Li J, Zhang B, Dou G, Liu J, Pei X, Wang Y. Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells. Sci Rep 2016; 6:37388. [PMID: 27874032 PMCID: PMC5118817 DOI: 10.1038/srep37388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Gap junction-mediated cell-cell interactions are highly conserved and play essential roles in cell survival, proliferation, differentiation and patterning. We report that Connexin 32 (Cx32)-mediated gap junctional intercellular communication (GJIC) is necessary for human embryonic stem cell-derived hepatocytes (hESC-Heps) during step-wise hepatic lineage restriction and maturation. Vitamin K2, previously shown to promote Cx32 expression in mature hepatocytes, up-regulated Cx32 expression and GJIC activation during hepatic differentiation and maturation, resulting in significant increases of hepatic markers expression and hepatocyte functions. In contrast, negative Cx32 regulator 2-aminoethoxydiphenyl borate blocked hESC-to-hepatocyte maturation and muted hepatocyte functions through disruption of GJIC activities. Dynamic gap junction organization and internalization are phosphorylation-dependent and the p38 mitogen-activated protein kinases pathway (MAPK) can negatively regulate Cxs through phosphorylation-dependent degradation of Cxs. We found that p38 MAPK inhibitor SB203580 improved maturation of hESC-Heps correlating with up-regulation of Cx32; by contrast, the p38 MAPK activator, anisomycin, blocked hESC-Heps maturation correlating with down-regulation of Cx32. These results suggested that Cx32 is essential for cell-cell interactions that facilitate driving hESCs through hepatic-lineage maturation. Regulators of both Cx32 and other members of its pathways maybe used as a promising approach on regulating hepatic lineage restriction of pluripotent stem cells and optimizing their functional maturation.
Collapse
Affiliation(s)
- Jinhua Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
- South China Research Center for Stem Cell and Regenerative Medicine, South China Institute of Biomedicine, Guangzhou 510005, China
| | - Mingyang Chang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Shuyong Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
- South China Research Center for Stem Cell and Regenerative Medicine, South China Institute of Biomedicine, Guangzhou 510005, China
| | - Zhenbo Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Wang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Fang Yan
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Jian Li
- Laboratory of Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
- South China Research Center for Stem Cell and Regenerative Medicine, South China Institute of Biomedicine, Guangzhou 510005, China
| | - Guifang Dou
- Laboratory of Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
- South China Research Center for Stem Cell and Regenerative Medicine, South China Institute of Biomedicine, Guangzhou 510005, China
| | - Yunfang Wang
- Tissue Engineering Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
4
|
Cogliati B, Mennecier G, Willebrords J, Da Silva TC, Maes M, Pereira IVA, Crespo-Yanguas S, Hernandez-Blazquez FJ, Dagli MLZ, Vinken M. Connexins, Pannexins, and Their Channels in Fibroproliferative Diseases. J Membr Biol 2016; 249:199-213. [PMID: 26914707 DOI: 10.1007/s00232-016-9881-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Cellular and molecular mechanisms of wound healing, tissue repair, and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders.
Collapse
Affiliation(s)
- Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Gregory Mennecier
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sara Crespo-Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Maria Lúcia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Reyes EP, Cerpa V, Corvalán L, Retamal MA. Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Front Cell Neurosci 2014; 8:123. [PMID: 24847209 PMCID: PMC4023181 DOI: 10.3389/fncel.2014.00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.
Collapse
Affiliation(s)
- Edison Pablo Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Verónica Cerpa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Liliana Corvalán
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio Antonio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
6
|
Huang F, Li S, Gan X, Wang R, Chen Z. Propofol inhibits gap junctions by attenuating sevoflurane-induced cytotoxicity against rat liver cells in vitro. Eur J Anaesthesiol 2014; 31:219-24. [PMID: 24145807 DOI: 10.1097/01.eja.0000435059.98170.da] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Liver abnormalities are seen in a small proportion of patients following anaesthesia with sevoflurane. OBJECTIVES To investigate whether the cytotoxicity of sevoflurane against rat liver cells was mediated by gap junction intercellular communications, and the effect of propofol on sevoflurane-induced cytotoxicity. DESIGN Experimental study. SETTING The study was carried out in the central laboratory of The Third Affiliated Hospital, Sun Yat-sen University. CELL LINE BRL-3A rat liver cells. METHODS Immortal rat liver cells BRL-3A were grown at low and high density. Colony-forming assays were performed to determine clonogenic growth of these cells. To investigate the effect of oleamide and propofol on gap junction function, we measured fluorescence transmission between cells using parachute dye-coupling assays. Immunoblotting assays were performed to determine connexin32 and connexin43 expression. RESULTS Our colony formation assays revealed that, in low-density culture, sevoflurane caused no apparent inhibition of clonogenic growth of BRL-3A cells. In high-density culture, 2.2 to 4.4% sevoflurane markedly inhibited clonogenic growth of BRL-3A cells with 67.6 (0.34)% and 61.2 (0.17)% of the cells being viable, respectively (P = 0.003 vs. low-density culture), suggesting cell density dependency of sevoflurane-induced cytotoxicity. Our colony formation assays revealed that propofol markedly attenuated the suppression by sevoflurane of the clonogenic growth of BRL-3A cells (viability: propofol and sevoflurane, 91.5 (0.014)% vs. sevoflurane, 56.6 (0.019)%; P <0.01). Blocking gap junctions with 10 μmol l oleamide significantly attenuated 4.4% sevoflurane-induced suppression with a viability of 83.6 ± 0.138% (oleamide and sevoflurane vs. sevoflurane, P < 0.01). Immunoblotting assays further showed that propofol (3.2 μg ml) markedly reduced CX32 levels and significantly inhibited gap junctional intercellular communications as revealed by parachute dye-coupling assays. Values are mean (SD). CONCLUSION This study provides the first direct evidence that sevoflurane-induced cytotoxicity, which is mediated through gap junctions, is attenuated by propofol, possibly by its action on Cx32 homomeric or heteromeric complexes.
Collapse
Affiliation(s)
- Fei Huang
- From the Department of Anaesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|