1
|
Xu X, Tang C, Linghu E, Ding H, Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Digestive Endoscopy, Chinese Medical Association. Guidelines for the Management of Esophagogastric Variceal Bleeding in Cirrhotic Portal Hypertension. J Clin Transl Hepatol 2023; 11:1565-1579. [PMID: 38161497 PMCID: PMC10752807 DOI: 10.14218/jcth.2023.00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 09/07/2023] [Indexed: 01/03/2024] Open
Abstract
To standardize the diagnosis, treatment, and management of esophagogastric variceal bleeding (EVB) in patients with cirrhotic portal hypertension, the Chinese Society of Hepatology, the Chinese Society of Gastroenterology, and the Chinese Society of Digestive Endoscopy of the Chinese Medical Association brought together relevant experts, reviewed the latest national and international progress in clinical research on EVB in cirrhotic portal hypertension, and followed evidence-based medicine to update the Guidelines on the Management of EVB in Cirrhotic Portal Hypertension. The guidelines provide recommendations for the diagnosis, treatment, and management of EVB in cirrhotic portal hypertension and with the aim to improve the level of clinical treatment of EVB in patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Enqiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Digestive Endoscopy, Chinese Medical Association
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Mahfoz AM, Gawish AY. Insight into the hepatoprotective, hypolipidemic, and antidiabetic impacts of aliskiren in streptozotocin-induced diabetic liver disease in mice. Diabetol Metab Syndr 2022; 14:163. [PMID: 36316746 PMCID: PMC9620647 DOI: 10.1186/s13098-022-00935-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Diabetic hepatopathy is a serious complication of poorly controlled diabetes mellitus. An efficient antidiabetic drug which keeps normal liver tissues is not available. The renin-angiotensin system has been reported to be involved in both diabetic state and liver function. Aliskiren is a direct renin inhibitor and a recently antihypertensive drug with poly-pharmacological properties. The aim of the current study is to explore the possible hepatoprotective effects and mechanisms of action of aliskiren against streptozotocin (STZ) induced liver toxicity. METHODS Mice were distributed to 3 groups; first: the normal control group, second: the diabetic control group, third: the diabetic group which received aliskiren (25 mg/kg; oral) for 4 weeks. At the end of the treatment period, plasma glucose, insulin, lipid profile, oxidative stress, and liver function tests were evaluated spectrophotometrically. ELISA technique was used to measure the expression levels of TNF-α and adiponectin. Furthermore, a Histopathological examination of liver samples was done. RESULTS It was shown that aliskiren treatment ameliorated the STZ-induced oxidative stress and elevated inflammatory biomarkers, hypercholesterolemia, serum aminotransferases and alkaline phosphatase levels in diabetic mice. In addition, hepatocellular necrosis, and fibrosis were improved by aliskiren treatment. CONCLUSION aliskiren protects against the liver damage caused by STZ-induced diabetes. This can be explained by its ability to block angiotensin-II, and its anti-diabetic, hypocholesterolemic, antioxidant and anti-inflammatory effects. Aliskiren could be a novel therapeutic strategy to prevent liver diseases associated with hypertension and diabetes mellitus.
Collapse
Affiliation(s)
- Amal M Mahfoz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Aya Y Gawish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
3
|
Gunarathne LS, Rajapaksha IG, Casey S, Qaradakhi T, Zulli A, Rajapaksha H, Trebicka J, Angus PW, Herath CB. Mas-related G protein-coupled receptor type D antagonism improves portal hypertension in cirrhotic rats. Hepatol Commun 2022; 6:2523-2537. [PMID: 35593203 PMCID: PMC9426402 DOI: 10.1002/hep4.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Splanchnic vasodilatation contributes to the development and aggravation of portal hypertension (PHT). We previously demonstrated that in cirrhosis, angiotensin‐ mediates splanchnic vasodilatation through the Mas receptor (MasR). In this study, we investigated whether the recently characterized second receptor for angiotensin‐(1–7), Mas‐related G protein‐coupled receptor type D (MrgD), contributes to splanchnic vasodilatation in cirrhotic and noncirrhotic PHT. Splanchnic vascular hemodynamic and portal pressure were determined in two rat models of cirrhotic PHT and a rat model with noncirrhotic PHT, treated with either MrgD blocker D‐Pro7‐Ang‐(1‐7) (D‐Pro) or MasR blocker A779. Gene and protein expression of MrgD and MasR were measured in splanchnic vessels and livers of cirrhotic and healthy rats and in patients with cirrhosis and healthy subjects. Mesenteric resistance vessels isolated from cirrhotic rats were used in myographs to study their vasodilatory properties. MrgD was up‐regulated in cirrhotic splanchnic vessels but not in the liver. In cirrhotic rats, treatment with D‐Pro but not A779 completely restored splanchnic vascular resistance to a healthy level, resulting in a 33% reduction in portal pressure. Mesenteric vessels pretreated with D‐Pro but not with A779 failed to relax in response to acetylcholine. There was no splanchnic vascular MrgD or MasR up‐regulation in noncirrhotic PHT; thus, receptor blockers had no effect on splanchnic hemodynamics. Conclusion: MrgD plays a major role in the development of cirrhotic PHT and is a promising target for the development of novel therapies to treat PHT in cirrhosis. Moreover, neither MrgD nor MasR contributes to noncirrhotic PHT.
Collapse
Affiliation(s)
- Lakmie S Gunarathne
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Indu G Rajapaksha
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Stephen Casey
- Liver Unit, Austin Health, Heidelberg, Victoria, Australia
| | - Tawar Qaradakhi
- College of Health and Biomedicine, Victoria University, Werribee, Victoria, Australia
| | - Anthony Zulli
- College of Health and Biomedicine, Victoria University, Werribee, Victoria, Australia
| | | | - Jonel Trebicka
- Department of Internal Medicine, University Clinic Frankfurt, Frankfurt, Germany
| | - Peter W Angus
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Gastroenterology, Austin Health, Heidelberg, Victoria, Australia
| | - Chandana B Herath
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Victoria, Australia.,Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| |
Collapse
|
4
|
Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol 2020; 26:6111-6140. [PMID: 33177789 PMCID: PMC7596642 DOI: 10.3748/wjg.v26.i40.6111] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension and bleeding from gastroesophageal varices is the major cause of morbidity and mortality in patients with cirrhosis. Portal hypertension is initiated by increased intrahepatic vascular resistance and a hyperdynamic circulatory state. The latter is characterized by a high cardiac output, increased total blood volume and splanchnic vasodilatation, resulting in increased mesenteric blood flow. Pharmacological manipulation of cirrhotic portal hypertension targets both the splanchnic and hepatic vascular beds. Drugs such as angiotensin converting enzyme inhibitors and angiotensin II type receptor 1 blockers, which target the components of the classical renin angiotensin system (RAS), are expected to reduce intrahepatic vascular tone by reducing extracellular matrix deposition and vasoactivity of contractile cells and thereby improve portal hypertension. However, these drugs have been shown to produce significant off-target effects such as systemic hypotension and renal failure. Therefore, the current pharmacological mainstay in clinical practice to prevent variceal bleeding and improving patient survival by reducing portal pressure is non-selective -blockers (NSBBs). These NSBBs work by reducing cardiac output and splanchnic vasodilatation but most patients do not achieve an optimal therapeutic response and a significant proportion of patients are unable to tolerate these drugs. Although statins, used alone or in combination with NSBBs, have been shown to improve portal pressure and overall mortality in cirrhotic patients, further randomized clinical trials are warranted involving larger patient populations with clear clinical end points. On the other hand, recent findings from studies that have investigated the potential use of the blockers of the components of the alternate RAS provided compelling evidence that could lead to the development of drugs targeting the splanchnic vascular bed to inhibit splanchnic vasodilatation in portal hypertension. This review outlines the mechanisms related to the pathogenesis of portal hypertension and attempts to provide an update on currently available therapeutic approaches in the management of portal hypertension with special emphasis on how the alternate RAS could be manipulated in our search for development of safe, specific and effective novel therapies to treat portal hypertension in cirrhosis.
Collapse
Affiliation(s)
- Lakmie S Gunarathne
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Harinda Rajapaksha
- School of Molecular Science, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Peter W Angus
- Department of Gastroenterology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Heidelberg, VIC 3084, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170, Australia
| |
Collapse
|
5
|
Joviano-Santos JV, Santos-Miranda A, Joca HC, Cruz JS, Ferreira AJ. Diminazene aceturate (DIZE) has cellular and in vivo antiarrhythmic effects. Clin Exp Pharmacol Physiol 2019; 47:213-219. [PMID: 31643111 DOI: 10.1111/1440-1681.13200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
Diminazene aceturate (DIZE) is an anti-protozoan compound that has been previously reported to increase the activity of the angiotensin-converting enzyme 2 (ACE2) and thus increase Angiotensin-(1-7) production, leading to cardioprotection against post-myocardial infarction dysfunction and structural remodelling. Moreover, DIZE is able to ameliorate morpho-functional changes after myocardial infarction by enhancing ACE2 activity, thus increasing Angiotensin-(1-7) production (a benefic peptide of the renin-angiotensin system). However, despite the improvement in cardiac function/structure, little is known about DIZE effects on arrhythmia suppression, contraction/excitable aspects of the heart and importantly its mechanisms of action. Thus, our aim was to test the acute effect of DIZE cardioprotection at the specific level of potential antiarrhythmic effects and modulation in excitation-contraction coupling. For this, we performed in vitro and in vivo techniques for arrhythmia induction followed by an acute administration of DIZE. For the first time, we described that DIZE can reduce arrhythmias which is explained by modulation of cardiomyocyte contraction and excitability. Such effects were independent of Mas receptor and nitric oxide release. Development of a new DIZE-based approach to ameliorate myocardial contractile and electrophysiological dysfunction requires further investigation; however, DIZE may provide the basis for a future beneficial therapy to post-myocardial infarction patients.
Collapse
Affiliation(s)
- Julliane V Joviano-Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Artur Santos-Miranda
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Humberto C Joca
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Jader S Cruz
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Anderson J Ferreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| |
Collapse
|
6
|
Di Pascoli M, La Mura V. Renin-angiotensin-aldosterone system in cirrhosis: There's room to try! Dig Liver Dis 2019; 51:297-298. [PMID: 30220630 DOI: 10.1016/j.dld.2018.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Di Pascoli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - Vincenzo La Mura
- IRCCS Ca' Granda, Maggiore Hospital Foundation, Unit of General Medicine - Hemostasis and Thrombosis, Milan, Italy; CRC "A.M. e A. Migliavacca" Center for the Study of Liver Disease, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Adar T, Edden Y, Shteingart S, Ben Ya’acov A, Mahamid M, Broide E, Shmorak S, Bar-Gil Shitrit A, Reinus C, Goldin E. Portal hypertension is associated with modulation of regulatory T cells. EUR J INFLAMM 2016; 14:40-47. [DOI: 10.1177/1721727x15622960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Background: Portal hypertension is a complication of liver cirrhosis. The portal vein drains the spleen and the intestines, which are both rich in inflammatory mediators. Portal hypertension- induced stress within these organs that may result in pro-inflammatory changes. The association of these changes with regulatory T cells was not addressed before. Aim: Our aim is to investigate the involvement of some subsets of regulatory T cells in portal hypertension. Methods: In the current study we used the partial portal vein ligation model to demonstrate differences in the distribution of regulatory T cells within the portal vein and the inferior vena cava associated with portal hypertension. Results: We show that CD4+CD25+FoxP3+ regulatory T cells are significantly ( P <0.05) increased only in the inferior vena cava of partial portal vein ligation-rats. The development of portal hypertension was associated with the reversal of the distribution patterns in the portal vein and inferior vena cava for both CD4+ and CD8+ cells. We further show that in naïve rats CD4+IL17+ cells were significantly ( P <0.05) and specifically enriched in inferior vena cava compared to the portal vein. Conclusions: These novel findings support the involvement of regulatory T cells in the inflammatory signals accompanied with acute portal hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Constantin Reinus
- Department of Pathology, Shaare Zedek Medical Center, affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| | | |
Collapse
|
8
|
El-Ashmawy NE, El-Bahrawy HA, Shamloula MM, Ibrahim AO. Antifibrotic effect of AT-1 blocker and statin in rats with hepatic fibrosis. Clin Exp Pharmacol Physiol 2015; 42:979-987. [PMID: 26175230 DOI: 10.1111/1440-1681.12446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 01/30/2023]
Abstract
Hepatic fibrosis is an outcome of chronic liver injury. Angiotensin II (ANG II) may play a role in the pathogenesis of hepatic fibrosis. Certain drugs such as ACE inhibitors, ANG II antagonists, and even statins could interfere with the renin angiotensin system and modulate its deleterious effects. This study was carried out to investigate the possible role of losartan and atorvastatin in liver fibrosis. Liver fibrosis was induced in rats by i.p. injection of 50% CCl4 twice per week for 8 weeks. The rats intoxicated with CCl4 were divided into four groups: fibrosis control; losartan group; atorvastatin group; and co-treated group. A fifth group of normal healthy rats served as a control group. The results showed that losartan and atorvastatin, either alone or in combination, significantly decreased ALT, AST, hyaluronic acid and hydroxyproline levels in their groups compared to those of the fibrosis control group. A significant decrease in TGF-β was found in the losartan and co-treated groups but not in the atorvastatin group. These biochemical data were supported by liver histopathology and α-SMA. The results indicate that the combined treatment with both losartan and atorvastatin produced a greater effect than either drug alone and proved a beneficial role in inhibiting or reversing liver fibrosis.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maha M Shamloula
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
10
|
Pereira AJ, Jeger V, Fahrner R, Djafarzadeh S, Lensch M, Takala J, Jakob SM. Interference of angiotensin II and enalapril with hepatic blood flow regulation. Am J Physiol Gastrointest Liver Physiol 2014; 307:G655-63. [PMID: 25059826 DOI: 10.1152/ajpgi.00150.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute reduction of portal vein blood flow (Qpv) increases hepatic arterial perfusion (Qha) [the hepatic arterial buffer response (HABR)]. Angiotensin II (AT-II) reduces Qpv, but its effect on HABR is not known. We explored interactions of AT-II and enalapril with hepatic blood flow regulation. Twenty healthy anesthetized pigs were randomized to receive AT-II (n = 8) from 5 to 61 ng/kg per min, enalapril (n = 8) from 3 to 24 μg/kg per h, or saline (n = 4). HABR was assessed by occluding portal vein and expressed as 1) ratio between changes in Qha and Qpv, 2) hepatic arterial conductance (Cha). AT-II infusion increased mean arterial blood pressure from 74 (66-77) mmHg to 116 (109-130) mmHg (median, IQR; P < 0.0001) and decreased cardiac output, Qpv, and renal artery flow (-24%, -28% and -45%, respectively). The fraction of cardiac output of Qha, carotid, and femoral flows increased. With enalapril, blood pressure decreased, whereas cardiac output was maintained with flow redistribution favoring hepatic and renal arteries. In AT-II group, dQha/dQpv increased from 0.06 (0.03, 0.17) to 0.24 (0.13, 0.31) (P = 0.002), but Cha during acute portal vein occlusion decreased from 4.3 (1.6, 6.6) to 2.9 (1.2, 3.7) ml/mmHg (P = 0.003). Both variables remained unchanged in the enalapril group and in controls. AT-II infusion reduces portal flow in parallel with cardiac output and induces a dose-dependent redistribution of flow, favoring brain, hepatic artery, and peripheral tissues at the expense of renal perfusion. During HABR, AT-II decreases Cha but increases Qha compensation, likely as result of increased hepatic arterial perfusion pressure. Enalapril had no effect on HABR.
Collapse
Affiliation(s)
| | - Victor Jeger
- Departments of Intensive Care Medicine and Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - René Fahrner
- Visceral Surgery and Medicine, Inselspital/University Hospital, and
| | | | | | | | | |
Collapse
|
11
|
Zhao CQ, Zhou Y, Ping J, Xu LM. Traditional Chinese medicine for treatment of liver diseases: progress, challenges and opportunities. JOURNAL OF INTEGRATIVE MEDICINE 2014; 12:401-8. [PMID: 25292339 PMCID: PMC7128864 DOI: 10.1016/s2095-4964(14)60039-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) is commonly used in treating liver diseases worldwide, especially in China. The advantages of using TCM for treatment of liver diseases include: protecting hepatocytes, inhibiting hepatic inflammation and antifibrosis in the liver. In this article, we introduce TCM herbal preparations from the Chinese materia medica (such as Fuzheng Huayu) that are typically used for the treatment of liver diseases. Literature surrounding the mechanisms of TCM therapy for treatment of liver diseases is presented and discussed. We propose that side effects of herbal compounds are often under-appreciated, and that more care should be taken in the prescription of potentially hepatotoxic medicines. Further, to deepen the understanding of TCM mechanisms, new techniques and methodologies must be developed. Future studies will lead to the enhancement of clinical outcomes of TCM. As complementary and alternative therapies, TCMs will play an expanding role in the future of liver disease treatment.
Collapse
Affiliation(s)
- Chang-qing Zhao
- Department of Liver Cirrhosis, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Zhou
- Department of Liver Cirrhosis, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Ping
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lie-ming Xu
- Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-mail:
| |
Collapse
|
12
|
Shaaban AA, Shaker ME, Zalata KR, El-kashef HA, Ibrahim TM. Modulation of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis by olmesartan and omega-3. Chem Biol Interact 2014; 207:81-91. [DOI: 10.1016/j.cbi.2013.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/21/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023]
|