1
|
Rowghani K, Patel B, Martinez-Guryn K. Dietary impact on the gut microbiome and epigenome and regulation of gut inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:369-398. [DOI: 10.1016/b978-0-443-18979-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Sáez-González E, Moret-Tatay I, Bastida G, Aguas M, Iborra M, Nos P, Beltrán B. MicroRNA and granulocyte-monocyte adsorption apheresis combotherapy after inadequate response to anti-TNF agents in ulcerative colitis. J Clin Apher 2024; 39:e22101. [PMID: 38054256 DOI: 10.1002/jca.22101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, affecting millions of individuals throughout the world, and producing an impaired health-related quality of life. Granulocyte and monocyte apheresis (GMA) is a therapeutic option for UC management to induce remission by selective removal of activated leukocytes from bloodstream. Despite the knowledge of the important role of epigenetics in UC pathogenesis, and in the response to different treatments, nothing is known about the role of microRNAs in GMA therapy in UC patients. METHODS Seven consecutively UC patients who started GMA in combo therapy with infliximab were recruited. Peripheral blood samples were taken before the apheresis session, at the start of the induction (S0) and at the end (S10). They were follow-up during the induction phase (10 sessions: 2 sessions for a week during 3 wk and 1 session for a week during 4 wk) of the treatment at a tertiary hospital (Hospital la Fe) and 6 mo after finishing the GMA induction therapy. MiRNA was extracted and analyzed by RT-PCR. R software and GraphPad were used. RESULTS Clinical disease activity significantly decreased after induction therapy with GMA (median partial Mayo score 2 (IQR, 1-6) (P < .05). Fecal calprotectin value and CRP value significantly decreased after induction therapy. Five microRNAs modified their expression during GMA (unsupervised analysis): miR-342-3p, miR-215-5p, miR-376c-3p, miR-139-5p, and miR-150-5p. When a sub-analysis was performed in those patients who showed good response to apheresis treatment (n = 5), two microRNAs showed to be implicated: miR-215-5p and miR-365a-3p. These are preliminary but promising and novel results, as it is the first time, to our knowledge that microRNA profiles have been studied in the context of GMA treatment for IBD.
Collapse
Affiliation(s)
- Esteban Sáez-González
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Inés Moret-Tatay
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Guillermo Bastida
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Mariam Aguas
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| |
Collapse
|
5
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
7
|
Elahimanesh M, Najafi M. Cross talk between bacterial and human gene networks enriched using ncRNAs in IBD disease. Sci Rep 2023; 13:7704. [PMID: 37169818 PMCID: PMC10175251 DOI: 10.1038/s41598-023-34780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term inflammatory immune-mediated gut illness with several extra-intestinal complications. The aims of this study were to identify a novel network-based meta-analysis approach on the basis of the combinations of the differentially expressed genes (DEGs) from microarray data, to enrich the functional modules from human protein-protein interaction (PPI) and gene ontology (GO) data, and to profile the ncRNAs on the genes involved in IBD. The gene expression profiles of GSE126124, GSE87473, GSE75214, and GSE95095 are obtained from the Gene Expression Omnibus (GEO) database based on the study criteria between 2017 and 2022. The DEGs were screened by the R software. DEGs were then used to examine gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The ncRNAs including the miRNAs and ceRNAs were predicted on the PPIs visualized using Cytoscape. Enrichment analysis of genes with differential expression (n = 342) using KEGG and GO showed that the signaling pathways related with staphylococcus aureus and pertussis bacterial infections may stimulate the immune system and exacerbate IBD via the interaction with human proteins including Fibrinogen gamma chain (FGG), Keratin 10 (KRT10), and Toll like receptor 4 (TLR4). By building a ceRNA network, lncRNA XIST and NEAT1 were determined by affecting common miRNAs, hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-6763-5p, hsa-miR-4436a, and hsa-miR-520a-5p. Additionally, the chromosome regions including NM_001039703 and NM_006267, which produce the most potent circRNAs play a significant role in the ceRNA network of IBD. Also, we predicted the siRNAs that would be most effective against the bacterial genes in staphylococcus aureus and pertussis infections. These findings suggested that three genes (FGG, KRT10, and TLR4), six miRNAs (hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-4436a, hsa-miR-520a-5p, and hsa-miR-6763-5p), two lncRNAs (XIST and NEAT1), and chromosomal regions including NM_001039703 and NM_006267 with the production of the most effective circRNAs are involved in the ncRNA-associated ceRNA network of IBD. These ncRNA profiles are related to the described gene functions and may play therapeutic targets in controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Nikolaieva N, Sevcikova A, Omelka R, Martiniakova M, Mego M, Ciernikova S. Gut Microbiota-MicroRNA Interactions in Intestinal Homeostasis and Cancer Development. Microorganisms 2022; 11:microorganisms11010107. [PMID: 36677399 PMCID: PMC9867529 DOI: 10.3390/microorganisms11010107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pre-clinical models and clinical studies highlight the significant impact of the host-microbiota relationship on cancer development and treatment, supporting the emerging trend for a microbiota-based approach in clinical oncology. Importantly, the presence of polymorphic microbes is considered one of the hallmarks of cancer. The epigenetic regulation of gene expression by microRNAs affects crucial biological processes, including proliferation, differentiation, metabolism, and cell death. Recent evidence has documented the existence of bidirectional gut microbiota-microRNA interactions that play a critical role in intestinal homeostasis. Importantly, alterations in microRNA-modulated gene expression are known to be associated with inflammatory responses and dysbiosis in gastrointestinal disorders. In this review, we summarize the current findings about miRNA expression in the intestine and focus on specific gut microbiota-miRNA interactions linked to intestinal homeostasis, the immune system, and cancer development. We discuss the potential clinical utility of fecal miRNA profiling as a diagnostic and prognostic tool in colorectal cancer, and demonstrate how the emerging trend of gut microbiota modulation, together with the use of personalized microRNA therapeutics, might bring improvements in outcomes for patients with gastrointestinal cancer in the era of precision medicine.
Collapse
Affiliation(s)
- Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Michal Mego
- National Cancer Institute and Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-02-3229519
| |
Collapse
|
9
|
Russo E, Cinci L, Di Gloria L, Baldi S, D’Ambrosio M, Nannini G, Bigagli E, Curini L, Pallecchi M, Andrea Arcese D, Scaringi S, Malentacchi C, Bartolucci G, Ramazzotti M, Luceri C, Amedei A, Giudici F. Crohn's disease recurrence updates: first surgery vs. surgical relapse patients display different profiles of ileal microbiota and systemic microbial-associated inflammatory factors. Front Immunol 2022; 13:886468. [PMID: 35967326 PMCID: PMC9374303 DOI: 10.3389/fimmu.2022.886468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) pathogenesis is still unclear. Remodeling in mucosal microbiota and systemic immunoregulation may represent an important component in tissue injury. Here, we aim to characterize the ileal microbiota in both pathological and healthy settings and to evaluate the correlated systemic microbial-associated inflammatory markers comparing first-time surgery and relapse clinical conditions. METHODS We enrolled 28 CD patients at surgery; we collected inflamed and non-inflamed mucosa tissues and blood samples from each patient. Bacterial wall adherence was observed histologically, while its composition was assessed through amplicon sequencing of the 16S rRNA gene. In addition, we evaluated the systemic microRNA (miRNA) using quantitative real-time PCR amplification and free fatty acids (FFAs) using gas chromatography-mass spectroscopy. RESULTS The total number of mucosal adherent microbiota was enriched in healthy compared to inflamed mucosa. In contrast, the phylum Tenericutes, the family Ruminococcaceae, and the genera Mesoplasma and Mycoplasma were significantly enriched in the pathological setting. Significant microbiota differences were observed between the relapse and first surgery patients regarding the families Bacillaceae 2 and Brucellaceae and the genera Escherichia/Shigella, Finegoldia, Antrobacter, Gemmatimonas, Moraxella, Anoxibacillus, and Proteus. At the systemic level, we observed a significant downregulation of circulating miR-155 and miR-223, as well as 2-methyl butyric, isobutyric, and hexanoic (caproic) acids in recurrence compared to the first surgery patients. In addition, the level of hexanoic acid seems to act as a predictor of recurrence risk in CD patients (OR 18; 95% confidence interval 1.24-261.81; p = 0.006). CONCLUSIONS We describe a dissimilarity of ileal microbiota composition comparing CD and healthy settings, as well as systemic microbial-associated inflammatory factors between first surgery and surgical relapse. We suggest that patterns of microbiota, associated with healthy ileal tissue, could be involved in triggering CD recurrence. Our findings may provide insight into the dynamics of the gut microbiota-immunity axis in CD surgical recurrence, paving the way for new diagnostics and therapeutics aimed not only at reducing inflammation but also at maintaining a general state of eubiosis in healthy tissue.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario D’Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Enteric Neuroscience Program, Department of Medicine, Section of Gastroenterology and Hepatology, Mayo Clinic, Rochester MN, United States
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Donato Andrea Arcese
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Malentacchi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
11
|
Hu W, Fang T, Chen X. Identification of Differentially Expressed Genes and miRNAs for Ulcerative Colitis Using Bioinformatics Analysis. Front Genet 2022; 13:914384. [PMID: 35719390 PMCID: PMC9201719 DOI: 10.3389/fgene.2022.914384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine whose cause and underlying mechanisms are not fully understood. The aim of this study was to use bioinformatics analysis to identify differentially expressed genes (DEGs) with diagnostic and therapeutic potential in UC.Materials and methods: Three UC datasets (GSE179285, GSE75214, GSE48958) were downloaded from the Gene Expression Omnibus (GEO) database. DEGs between normal and UC tissues were identified using the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed using Metascape. Protein-protein interaction network (PPI) analysis and visualization using STRING and Cytoscape. Finally, the miRNA gene regulatory network was constructed by Cytoscape to predict potential microRNAs (miRNAs) associated with DEGs.Results: A total of 446 DEGs were identified, consisting of 309 upregulated genes and 137 downregulated genes. The enriched functions and pathways of the DEGs include extracellular matrix, regulation of cell adhesion, inflammatory response, response to cytokine, monocarboxylic acid metabolic process, response to toxic substance. The analysis of KEGG pathway indicates that the DEGs were significantly enriched in Complement and coagulation cascades, Amoebiasis, TNF signaling pathway, bile secretion, and Mineral absorption. Combining the results of the PPI network and CytoHubba, 9 hub genes including CXCL8, ICAM1, CXCR4, CD44, IL1B, MMP9, SPP1, TIMP1, and HIF1A were selected. Based on the DEG-miRNAs network construction, 7 miRNAs including miR-335-5p, mir-204-5p, miR-93-5p, miR106a-5p, miR-21-5p, miR-146a-5p, and miR-155-5p were identified as potential critical miRNAs.Conclusion: In summary, we identified DEGs that may be involved in the progression or occurrence of UC. A total of 446 DEGs,9 hub genes and 7 miRNAs were identified, which may be considered as biomarkers of UC. Further studies, however, are needed to elucidate the biological functions of these genes in UC.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Xiaoqing Chen,
| |
Collapse
|
12
|
Cai L, Lai D, Gao J, Wu H, Shi B, Ji H, Tou J. The role and mechanisms of miRNA in neonatal necrotizing enterocolitis. Front Pediatr 2022; 10:1053965. [PMID: 36518784 PMCID: PMC9742607 DOI: 10.3389/fped.2022.1053965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC), the most significant causes of neonatal mortality, is a disease of acute intestinal inflammation. At present, it is not clear exactly how the disease is caused, but it has been suggested that this disorder is a result of a complex interaction among prematurity, enteral feeding and inappropriate pro-inflammation response and bacterial infection of the intestine. A microRNA (miRNA) is a class of endogenous non-coding single-stranded RNA that is about 23 nucleotides long engaging in the regulation of the gene expression. Recently, numerous studies have determined that abnormal miRNA expression plays important roles in various diseases, including NEC. Here, we summarized the role of miRNAs in NEC. We introduce the biosynthetic and function of miRNAs and then describe the possible mechanisms of miRNAs in the initiation and development of NEC, including their influence on the intestinal epithelial barrier's function and regulation of the inflammatory process. Finally, this review aids in a comprehensive understanding of the current miRNA to accurately predict the diagnosis of NEC and provide ideas to find potential therapeutic targets of miRNA for NEC. In conclusion, our aims are to highlight the close relationship between miRNAs and NEC and to summarize the practical value of developing diagnostic biomarkers and potential therapeutic targets of NEC.
Collapse
Affiliation(s)
- Linghao Cai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiafang Gao
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wu
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haosen Ji
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
13
|
Rashid H, Siddiqua TJ, Hossain B, Siddique A, Kabir M, Noor Z, Alam M, Ahmed M, Haque R. MicroRNA Expression and Intestinal Permeability in Children Living in a Slum Area of Bangladesh. Front Mol Biosci 2021; 8:765301. [PMID: 34957214 PMCID: PMC8692878 DOI: 10.3389/fmolb.2021.765301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression. Changes in miRNA expression have been reported in a number of intestinal diseases, in both tissue samples and readily accessible specimens like stools. Pathogenic infections, diet, toxins, and other environmental factors are believed to influence miRNA expression. However, modulation of miRNAs in humans is yet to be thoroughly investigated. In this study, we examined the expression levels of two human miRNAs (miRNA-122 and miRNA-21) in stool samples of a group of Bangladeshi children who had an altered/increased intestinal permeability (IIP). Methods: Stool samples were collected from children with IIP (L:M > 0.09) and normal intestinal permeability (NIP) (L:M ≤ 0.09). Quantitative PCR was performed to quantify the levels of miRNA-122 and miR-21 in stools. Commercial ELISA kits were used to measure gut inflammatory markers Calprotectin and REG1B. Serum samples were tested using Human Bio-Plex Pro Assays to quantify IL-1β, IL-2, IL-5, IL-10, IL-13, IFN-γ, and TNF-α. Total nucleic acid extracted from stool specimens were used to determine gut pathogens using TaqMan Array Card (TAC) system real-time polymerase chain reaction. Results: The expression levels of miRNA-122 (fold change 11.6; p < 0.001, 95% CI: 6.14-11.01) and miR-21 (fold change 10; p < 0.001, 95% CI: 5.05-10.78) in stool were upregulated in children with IIP than in children with normal intestinal permeability (NIP). Significant correlations were observed between stool levels of miR-122 and miR-21 and the inflammatory cytokines IL-1β, IL-2, IFN-γ, and TNF-α (p < 0.05). Children with IIP were frequently infected with rotavirus, Campylobacter jejuni, Bacteroides fragilis, adenovirus, norovirus, astrovirus, and various Escherichia coli strains (ETEC_STh, ETEC_STp, EAEC_aaiC, EAEC_aatA) (p < 0.001). miR-122 significantly correlated with the fecal inflammatory biomarkers REG1B (p = 0.015) and Calprotectin (p = 0.030), however miR-21 did not show any correlation with these fecal biomarkers.
Collapse
Affiliation(s)
- Humaira Rashid
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Towfida J. Siddiqua
- Nutrition and Clinical Service Division (NCSD), International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Biplob Hossain
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Abdullah Siddique
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Zannatun Noor
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Masud Alam
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Mamun Ahmed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
14
|
Moret-Tatay I, Cerrillo E, Hervás D, Iborra M, Sáez-González E, Forment J, Tortosa L, Nos P, Gadea J, Beltrán B. Specific Plasma MicroRNA Signatures in Predicting and Confirming Crohn's Disease Recurrence: Role and Pathogenic Implications. Clin Transl Gastroenterol 2021; 12:e00416. [PMID: 34695034 PMCID: PMC8547914 DOI: 10.14309/ctg.0000000000000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are important epigenetic regulators in Crohn's disease (CD); however, their contribution to postoperative recurrence (POR) is still unknown. We aimed to characterize the potential role of miRNAs in predicting POR in patients with CD and to identify their pathogenic implications. METHODS Of 67 consecutively operated patients with CD, we included 44 with pure ileal CD. Peripheral blood samples were taken before surgery and during follow-up. The patients were classified according to the presence or absence of POR assessed by ileocolonoscopy or magnetic resonance imaging enterography. The miRNAs were profiled by reverse transcription polymerase chain reaction before surgery and during morphological POR or, for those who remained in remission, 1 year after surgery. R software and mirWalk were used. RESULTS Five human miRNAs (miR-191-5p, miR-15b-5p, miR-106b-5p, miR-451a, and miR-93-5p) were selected for discriminating between the 2 patient groups at presurgery (PS), with an area under the curve of 0.88 (95% confidence interval [0.79, 0.98]). Another 5 (miR-15b-5p, miR-451a, miR-93-5p, miR-423-5p, and miR-125b-5p) were selected for 1 year, with an area under the curve of 0.96 (95% confidence interval [0.91, 1.0]). We also created nomograms for POR risk estimation. CCND2 and BCL9L genes were related to PS miRNA profiles; SENP5 and AKT3 genes were related to PS and 1 year; and SUV39H1 and MAPK3K10 were related to 1 year. DISCUSSION Different plasma miRNA signatures identify patients at high POR risk, which could help optimize patient outcomes. We developed nomograms to facilitate the clinical use of these results. The identified miRNAs participate in apoptosis, autophagy, proinflammatory immunological T-cell clusters, and reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - David Hervás
- Biostatistics Unit, Health Research IIS La Fe, Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Javier Forment
- The Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia- Spanish Research Council (CSIC), Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Jose Gadea
- The Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia- Spanish Research Council (CSIC), Valencia, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
15
|
Wang P, Chen Y, Zhang LM, Yuan SQ, Lu SA, Zhang YJ. Effect of MicroRNA145 on the multidrug resistance gene of ulcerative colitis in rats. Life Sci 2021; 278:119603. [PMID: 33984358 DOI: 10.1016/j.lfs.2021.119603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance gene (MDR1a) and P-glycoprotein (P-gp) play an important role in the development of ulcerative colitis (UC) and influence the therapeutic effect of glucocorticoids, which may lead to drug resistance mechanically. UC may be related to miR-145 to some extent, and the relationship still needs further exploration. In this study we found that the expression of miR-145 was downregulated in the colonic tissues of rats with Dextran sodium sulfate (DSS)-induced UC. Also, the expression of MDR1a in colon tissues of each group negatively correlated with the expression of miR-145 in rats. The change in the plasma peak concentration (Cmax) in each group positively related to the miR-145 level. Mechanistically, miR-145 negatively regulated the expression and function of P-gp via acting directly on the 3'-UTR of MDR1 mRNA. Overall, these results indicated that miR-145 had a protective effect on the colorectal mucosa, and its downregulation may enhance the expression and function of MDR1a and P-gp, promoting the occurrence and development of UC. The downregulation of miR-145 reduced the drug sensitivity of 5-aminosalicylic acid (5-ASA) and glucocorticoids in treating UC, indicating that miR-145 might be a potential therapeutic target for UC.
Collapse
Affiliation(s)
- Ping Wang
- Department of Public Health, School of Medicine, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yan Chen
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China.
| | - La-Mei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Si-Qi Yuan
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shen-Ao Lu
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Ying-Jian Zhang
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China.
| |
Collapse
|
16
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Duan XY, Sun Y, Zhao ZF, Shi YQ, Ma XY, Tao L, Liu MW. Baicalin attenuates LPS-induced alveolar type II epithelial cell A549 injury by attenuation of the FSTL1 signaling pathway via increasing miR-200b-3p expression. Innate Immun 2021; 27:294-312. [PMID: 34000873 PMCID: PMC8186156 DOI: 10.1177/17534259211013887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In China, baicalin is the main active component of Scutellaria baicalensis, which has been used in the treatment of inflammation-related diseases, such as inflammation-induced acute lung injury. However, its specific mechanism remains unclear. This study examined the protective effect of baicalin on LPS-induced inflammation injury of alveolar epithelial cell line A549 and explored its protective mechanism. Compared with the LPS-induced group, the proliferation inhibition rates of alveolar type II epithelial cell line A549 intervened by different concentrations of baicalin decreased significantly, as did the levels of inflammatory factors IL-6, IL-1β, prostaglandin 2 and TNF-α in the supernatant. The expression levels of inflammatory proteins inducible NO synthase (iNOS), NF-κB65, phosphorylated ERK (p-ERK1/2), and phosphorylated c-Jun N-terminal kinase (p-JNK1) significantly decreased, as did the protein expression of follistatin-like protein 1 (FSTL1). In contrast, expression of miR-200b-3p significantly increased in a dose-dependent manner. These results suggested that baicalin could significantly inhibit the expression of inflammation-related proteins and improve LPS-induced inflammatory injury in alveolar type II epithelial cells. The mechanism may be related to the inhibition of ERK/JNK inflammatory pathway activation by increasing the expression of miR-200b-3p. Thus, FSTL1 is the regulatory target of miR-200b-3p.
Collapse
Affiliation(s)
- Xin-Ya Duan
- Department of Tuberculosis Diseases, Third People's Hospital of Kunming City, China
| | - Yang Sun
- Department of Nephrology, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Zhu-Feng Zhao
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Yao-Qing Shi
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Xun-Yan Ma
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Li Tao
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| |
Collapse
|
18
|
Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, Hong SH, Yon DK, Lee SW, Kim MS, Wasuwanich P, Karnsakul W, Shin JI, Kronbichler A. Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci 2021; 17:2112-2123. [PMID: 34131410 PMCID: PMC8193269 DOI: 10.7150/ijbs.59904] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that mainly affects young people. IBD is associated with various gastrointestinal symptoms, and thus, affects the quality of life of patients. Currently, the pathogenesis of IBD is poorly understood. Although intestinal bacteria and host immune response are thought to be major factors in its pathogenesis, a sufficient explanation of their role in its pathophysiologic mechanism has not been presented. MicroRNAs (miRNAs), which are small RNA molecules that regulate gene expression, have gained attention as they are known to participate in the molecular interactions of IBD. Recent studies have confirmed the important role of miRNAs in targeting certain molecules in signaling pathways that regulate the homeostasis of the intestinal barrier, inflammatory reactions, and autophagy of the intestinal epithelium. Several studies have identified the specific miRNAs associated with IBD from colon tissues or serum samples of IBD patients and have attempted to use them as useful diagnostic biomarkers. Furthermore, some studies have attempted to treat IBD through intracolonic administration of specific miRNAs in the form of nanoparticle. This review summarizes the latest findings on the role of miRNAs in the pathogenesis, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- HyunTaek Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
| | - Paul Wasuwanich
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zhao J, Wang H, Zhou J, Qian J, Yang H, Zhou Y, Ding H, Gong Y, Qi X, Jiao Y, Ying P, Tang L, Sun Y, Zhu W. miR-130a-3p, a Preclinical Therapeutic Target for Crohn's Disease. J Crohns Colitis 2021; 15:647-664. [PMID: 33022049 DOI: 10.1093/ecco-jcc/jjaa204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Crohn's disease [CD] is a chronic, relapsing and incurable inflammatory disorder. Micro RNAs [miRNAs], which modulate gene expression by binding to mRNAs, may make significant contributions to understanding the complex pathobiology and aetiology of CD. This study aimed to investigate the therapeutic role and mechanism of miR-130a-3p in CD. METHODS Differentially expressed miRNAs in colon tissues of CD patients and normal controls [NCs] were screened using an miRNA microarray and then validated by quantitative reverse transcriptase-PCR [qRT-PCR]. The functional role of miR-130a-3p in the pathogenesis of CD was then demonstrated by in vitro and in vivo studies. The target genes of miR-130a-3p and the associated signalling pathways were identified using bioinformatics analysis and experimental verification of the interactions between the target predicted by the algorithms and dysregulated mRNAs. The therapeutic role of miR-130a-3p in trinitro-benzene-sulfonic acid [TNBS]-induced colitis models was further investigated. RESULTS Our data demonstrated that miR-130a-3p is the most significantly upregulated miRNA and that miR-130a knockout significantly protects mice against TNBS-induced colitis. Gain- and loss-of-function studies indicated that miR-130a-3p promotes CD development by targeting ATG16L1 via the NF-κB pathway. Furthermore, an miR-130a-3p inhibitor significantly suppressed NLRP3 inflammasome activity by inducing autophagy in a mouse macrophage cell line [RAW264.7]. Therapeutically, an miR-130a-3p inhibitor effectively ameliorated the severity of TNBS-induced colitis. CONCLUSION Our study reveals that miR-130a-3p promotes CD progression via the ATG16L1/NF-κB pathway and serves as a potential preclinical therapeutic target in CD.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Medical School of Nantong University, Taizhou, Jiangsu, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Ding
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiaoyang Qi
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Pu Ying
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Zhou W, Zhang H, Pan Y, Xu Y, Cao Y. circRNA expression profiling of colon tissue from mesalazine-treated mouse of inflammatory bowel disease reveals an important circRNA-miRNA-mRNA pathway. Aging (Albany NY) 2021; 13:10187-10207. [PMID: 33819198 PMCID: PMC8064189 DOI: 10.18632/aging.202780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Mesalazine (5-aminosalicylic acid, 5-ASA) has been widely used to treat inflammatory bowel disease (IBD). However, it remains unclear about the underlying biological mechanisms of IBD pathogenesis and mesalazine treatment, which could be partially clarified by exploring the profiling of circular RNAs (circRNAs) using RNA-seq. A total of 15 mice (C57BL/6) were randomly assigned to three equally sized groups: control, dextran sulfate sodium (DSS, using DSS to induce IBD), and DSS+5-ASA (using mesalazine to treat IBD). We randomly selected three mice of each group to collect colon tissues for RNA-seq and then performed bioinformatic analysis for two comparisons: DSS vs. control and DSS+5-ASA vs. DSS. Comparisons of a series of indicators (e.g., body weight) verified the establishment of DSS-induced IBD mouse model and the effectiveness of mesalazine in treating IBD. We identified 182 differentially expressed circRNAs, including 55 up-regulated and 47 down-regulated circRNAs when comparing the DSS+5-ASA with the DSS group. These 102 circRNA-associated genes were significantly involved in the N-Glycan biosynthesis and lysine degradation. The network analysis of circRNA-miRNA-mRNAs identified an important pathway, i.e., chr10:115386962-115390436+/mmu-miR-6914-5p/Atg7, which is related to autophagy. The findings provide new insights into the biological mechanisms of IBD pathogenesis and mesalazine treatment, particularly highlighting the circRNA-miRNA-mRNA pathway.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, United States of America
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Pan
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Cao
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Farsi F, Ebrahimi-Daryani N, Golab F, Akbari A, Janani L, Karimi MY, Irandoost P, Alamdari NM, Agah S, Vafa M. A randomized controlled trial on the coloprotective effect of coenzyme Q10 on immune-inflammatory cytokines, oxidative status, antimicrobial peptides, and microRNA-146a expression in patients with mild-to-moderate ulcerative colitis. Eur J Nutr 2021; 60:3397-3410. [PMID: 33620550 DOI: 10.1007/s00394-021-02514-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Coenzyme Q10 (CoQ10), having potent antioxidant and anti-inflammatory pharmacological properties, has recently been shown to be a safe and promising agent in maintaining remission of ulcerative colitis (UC). This trial was, therefore, designed to determine CoQ10 efficacy on inflammation and antioxidant status, antimicrobial peptides, and microRNA-146a expression in UC patients. METHODS In this randomized double-blind controlled trial, 88 mild-to-moderate UC patients were randomly allocated to receive CoQ10 (200 mg/day) or placebo (rice flour) for 2 months. At the baseline and at an 8-week follow-up, serum levels of Nrf2, cathelicidin LL-37, β-defensin 2, IL-10, IL-17, NF-κB p65 activity in peripheral blood mononuclear cells (PBMCs), simple clinical colitis activity index questionnaire (SCCAIQ), and quality of life (IBDQ-32 score), as well as an expression rate of microRNA-146a were measured. RESULTS A significant reduction was detected in the serum IL-17 level, activity of NF-κB p65 in PBMCs, and also SCCAI score in the CoQ10 group compared to the placebo group, whereas IL-10 serum concentrations and IBDQ-32 score of the CoQ10 group considerably increased versus the control group; the changes of these variables were also significantly different within and between groups at the end of the study. Furthermore, CoQ10 remarkably increased serum levels of cathelicidin LL-37. A significant change in serum cathelicidin LL-37 levels was also observed between the two groups. No statistical difference, however, was seen between the two groups in terms of the serum levels of Nrf2 and β-defensin 2 and the relative expression of microRNA-146a. CONCLUSIONS Our results indicate that CoQ10 supplementation, along with drug therapy, appears to be an efficient reducer of inflammation in patients with mild-to-moderate UC at a remission phase. TRIAL REGISTRATION The research has also been registered at the Iranian Registry of Clinical Trials (IRCT): IRCT20090822002365N17.
Collapse
Affiliation(s)
- Farnaz Farsi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pardis Irandoost
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naimeh Mesri Alamdari
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Nazimek K. The complex functions of microRNA-150 in allergy, autoimmunity and immune tolerance. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>At present, special efforts are being made to develop the strategies allowing for activation of long-lasting antigen-specific immune tolerance in therapy of allergic and autoimmune diseases. Some of these therapeutic approaches are aimed at modulating cell functions at genetic level by using miRNA-based and miRNA-targeting treatments. Simultaneously, the crucial role of extracellular vesicles as natural miRNA conveyors is highlighted for induction of antigen-specific immune tolerance, especially that they appear to be easily manipulatable for therapeutic applications. Among other immune-related miRNAs, miR-150 is getting special attention as it is differently expressed by immune cells at various stages of their maturation and differentiation. In addition, miR-150 is involved in different signaling cascades orchestrating humoral and cell-mediated mechanisms of both innate and adaptive immune responses. Therefore, miR-150 is considered a master regulator of immunity in mammals. Currently, physiological miR-150-dependent regulatory circuits and causes of their malfunctioning that underlie the pathogenesis of allergic and autoimmune disorders are being unraveled. Thus, present review summarizes the current knowledge of the role of miR-150 in the pathogenesis and complications of these diseases. Furthermore, the involvement of miR-150 in regulation of immune responses to allergens and self-antigens and in induction of antigen-specific immune tolerance is discussed with the special emphasis on the therapeutic potential of this miRNA.</p>
</abstract>
Collapse
|
23
|
Zobeiri M, Momtaz S, Parvizi F, Tewari D, Farzaei MH, Nabavi SM. Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Curr Pharm Biotechnol 2020; 21:1342-1353. [PMID: 31840607 DOI: 10.2174/1389201021666191216122555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
An increase in the prevalence of Inflammatory Bowel Diseases (IBD) as a multifactorial intestinal chronic inflammation as well as the absence of a certain cure, has created an innovative era in the management of IBD by molecule/pathway-based anti-inflammatory approaches. There are credible documentations that demonstrate Mitogen-Activated Protein Kinases (MAPK) acts as IBD regulator. Upon the activation of MAPK signalling pathway, the transcription and expression of various encoding inflammatory molecules implicated in IBD are altered, thereby exacerbating the inflammation development. The current pharmacological management of IBD, including drug and biological therapies are expensive, possess temporary relief and some adverse effects. In this context, a variety of dietary fruits or medicinal herbs have received worldwide attention versus the development of IBD. Infact, natural ingredients, such as Flavaglines, Fisetin, Myricitrin, Cardamonin, Curcumin, Octacosanol and Mangiferin possess protective and therapeutic effects against IBD via modulation of different segments of MAPK signaling pathway. This review paper calls attention to the role of MAPK signaling triggered by natural products in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Mehdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
25
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
26
|
Xu X, Zhang P, Li X, Liang Y, Ouyang K, Xiong J, Wang D, Duan L. MicroRNA expression profiling in an ovariectomized rat model of postmenopausal osteoporosis before and after estrogen treatment. Am J Transl Res 2020; 12:4251-4263. [PMID: 32913502 PMCID: PMC7476138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a common disease that seriously threatens human health. Estrogen deficiency plays an essential role in the pathogenesis of PMOP. MicroRNAs (miRNAs) are involved in the development and progression of PMOP. Therefore, identification of miRNAs in PMOP due to estrogen deficiency may contribute to earlier diagnosis and better treatment of this disease. The rat model of PMOP was established by ovariectomy. After one month of treatment, the knee joints were evaluated by microcomputed tomography and histological analysis. The plasma estrogen levels were quantified by enzyme-linked immunosorbent assays (ELISAs). MiRNA levels were analyzed by high-throughput sequencing and validated using quantitative real-time PCR (qRT-PCR). Two months after ovariectomy, osteoporosis occurred in the subchondral bone of the rats in the PMOP group, while fewer symptoms of osteoporosis occurred in the subchondral bone of the rats with estrogen replacement therapy. Cartilage degeneration was detected in the PMOP group. MiR-29a-3p, miR-93-5p, and miR-486 expression decreased in the PMOP group compared to the control group. After estrogen treatment for one month, the plasma levels of miR-29a-3p, miR-93-5p, and miR-486 recovered to the normal levels. Estrogen eliminated the expression changes in miR-29a-3p, miR-93-5p, and miR-486. The identification of these differentially expressed miRNAs will help elucidate the crucial role of miRNAs in the pathogenesis of PMOP. Our data could lead to the potential utilization of miRNAs in the diagnosis of PMOP and provide a possible therapeutic target for treatment of this disease.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055, Guangdong, China
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong Province, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055, Guangdong, China
| | - Xingfu Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong Province, China
| | - Yujie Liang
- Shenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhen 518035, Guangdong Province, China
| | - Kan Ouyang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Daping Wang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| |
Collapse
|
27
|
Liu X, Zhang Y, Jiang P, Cai J, Fu Q, Li X, Li Z. Ultrasonic cardiogram and MiRNA-21 analysis of cardiac dysfunction in patients with cardiac arrest following cardiopulmonary resuscitation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 190:105284. [PMID: 32018074 DOI: 10.1016/j.cmpb.2019.105284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE To explore correlations between the serum level of miRNA-21 expression and cardiac dysfunction severity after cardiopulmonary resuscitation (CPR) using ultrasonic cardiogram. METHODS Thirty-nine patients with cardiopulmonary arrest receiving successful CPR and forty-one healthy participants were recruited in the study. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunochemiluminometric assays was used to examine the serum miRNA-21 level and the concentration of cardiac troponins T and I, respectively. Indices of Electrocardiogram (ECG) and cardiac dysfunction measured by ultrasound of patients in the case group were used to assess cardiac function after CPR. Furthermore, the correlation between the serum level of miRNA-21 expression and severity of cardiac dysfunction was analyzed by Spearman correlation analysis. RESULTS As compared to the control group, the serum level of miRNA-21 expression, as well as cardiac troponin T and I levels in the case group were significantly higher (p = 0.000). The miRNA-21 expression level in the patients at IV grade of cardiac function were substantially higher than patients at III grade (p = 0.015). There was no significant difference in level of cardiac troponins T and I between patients at III grade and patients at IV grade (p > 0.05). Further, Spearman correlation analysis revealed that the level of miRNA-21 expression was negatively correlated with cardiac function index in the ultrasound imaging: E peak, E/A value, LVEF and LVEDD (r = 0.617, 0.535, 0.612, 0.573, P = 0.012, 0.009, 0.008, 0.011), but was positively correlated with the level of cardiac troponins T and I (r = 0.546,0.582, P = 0.006,0.007) and the severity of cardiac dysfunction (r = 0.859, p < 0.05). CONCLUSION The level of miRNA-21 is higher after CPR is closely related to the severity of cardiac dysfunction that is measured by ultrasound, suggesting that it may serve as a potential biomarker.
Collapse
Affiliation(s)
- Xing Liu
- Department of Emergency. Shenzhen Longhua District Center Hospital, Shenzhen, Guangdong 518110, PR China
| | - Yongguang Zhang
- Department of Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, PR China
| | - Peng Jiang
- Department of Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, PR China
| | - Jiachen Cai
- Department of Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, PR China
| | - Qiuhong Fu
- Department of Emergency. Shenzhen Longhua District Center Hospital, Shenzhen, Guangdong 518110, PR China
| | - Xiaolei Li
- Department of Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, PR China
| | - Zhou Li
- Department of Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
28
|
Which long noncoding RNAs and circular RNAs contribute to inflammatory bowel disease? Cell Death Dis 2020; 11:456. [PMID: 32541691 PMCID: PMC7295799 DOI: 10.1038/s41419-020-2657-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), a chronic relapsing gastrointestinal inflammatory disease, mainly comprises ulcerative colitis (UC) and Crohn’s disease (CD). Although the mechanisms and pathways of IBD have been widely examined in recent decades, its exact pathogenesis remains unclear. Studies have focused on the discovery of new therapeutic targets and application of precision medicine. Recently, a strong connection between IBD and noncoding RNAs (ncRNAs) has been reported. ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). The contributions of lncRNAs and circRNAs in IBD are less well-studied compared with those of miRNAs. However, lncRNAs and circRNAs are likely to drive personalized therapy for IBD. They will enable accurate diagnosis, prognosis, and prediction of therapeutic responses and promote IBD therapy. Herein, we briefly describe the molecular functions of lncRNAs and circRNAs and provide an overview of the current knowledge of the altered expression profiles of lncRNAs and circRNAs in patients with IBD. Further, we discuss how these RNAs are involved in the nosogenesis of IBD and are emerging as biomarkers.
Collapse
|
29
|
Huang X, Lin Y, Zheng X, Wang C. MiRNA-338-5p reduced inflammation through TXNIP/NLRP3 inflammasome axis by CXCR4 in DSS-induced colitis. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-019-00060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zhang H, Xue S, Feng Y, Shen J, Zhao J. MicroRNA-24-3p inhibition prevents cell growth of vascular smooth muscle cells by targeting Bcl-2-like protein 11. Exp Ther Med 2020; 19:2467-2474. [PMID: 32256723 PMCID: PMC7086294 DOI: 10.3892/etm.2020.8517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous reports have shown that dysfunction of vascular smooth muscle cells (VSMCs) serves a critical function in the development of cardiovascular disease, including coronary heart disease (CHD). microRNAs (miRNAs/miRs) have been reported to play important roles in regulating the function of VSMCs. The present study aimed to determine the role of miR-24-3p in VSMCs and to uncover the underlying mechanism. The expression of miR-24-3p in the peripheral blood samples of CHD patients was measured by reverse transcription-quantitative (RT-q)PCR. It was found that the level of miR-24-3p in the peripheral blood of patients with CHD was significantly upregulated compared with that in healthy controls. A dual luciferase reporter assay was performed to determine whether Bcl-2-like protein 11 (Bcl-2L11) was a target gene of miR-24-3p, and it was identified that Bcl-2L11 was a direct target of miR-24-3p. The mRNA level and protein expression of Bcl-2L11 in the peripheral blood of patients with CHD were measured by RT-qPCR and western blotting, respectively. The findings suggested that Bcl-2L11 was downregulated in the peripheral blood of patients with CHD. In addition, it was found that downregulation of miR-24-3p suppressed VSMC proliferation and promoted VSMC apoptosis, while the effects of the miR-24-3p inhibitor on cell viability and apoptosis were reversed by Bcl-2L11-small interfering (si)RNA. Additionally, downregulation of miR-24-3p increased the levels of Bcl-2L11, caspase-3 and Bax, and decreased Bcl-2 expression in VSMCs; these changes were abolished by Bcl-2L11-siRNA. In conclusion, the aforementioned results indicated that miR-24-3p was an important regulator in VSMC proliferation and apoptosis by targeting Bcl-2L11, which suggested that miR-24-3p might be a potential therapeutic target for the treatment of CHD.
Collapse
Affiliation(s)
- Huanxin Zhang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shizhen Xue
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yi Feng
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun Shen
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jixian Zhao
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
31
|
Konstantinidis AΟ, Pardali D, Adamama-Moraitou KK, Gazouli M, Dovas CI, Legaki E, Brellou GD, Savvas I, Jergens AE, Rallis TS, Allenspach K. Colonic mucosal and serum expression of microRNAs in canine large intestinal inflammatory bowel disease. BMC Vet Res 2020; 16:69. [PMID: 32087719 PMCID: PMC7035774 DOI: 10.1186/s12917-020-02287-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal (GI) disorders of still largely unknown etiology. Canine IBD diagnosis is time-consuming and costly as other diseases with similar signs should be initially excluded. In human IBD microRNA (miR) expression changes have been reported in GI mucosa and blood. Thus, there is a possibility that miRs may provide insight into disease pathogenesis, diagnosis and even treatment of canine IBD. The aim of this study was to determine the colonic mucosal and serum relative expression of a miRs panel in dogs with large intestinal IBD and healthy control dogs. RESULTS Compared to healthy control dogs, dogs with large intestinal IBD showed significantly increased relative expression of miR-16, miR-21, miR-122 and miR-147 in the colonic mucosa and serum, while the relative expression of miR-185, miR-192 and miR-223 was significantly decreased. Relative expression of miR-146a was significantly increased only in the serum of dogs with large intestinal IBD. Furthermore, serum miR-192 and miR-223 relative expression correlated to disease activity and endoscopic score, respectively. CONCLUSION Our data suggest the existence of dysregulated miRs expression patterns in canine IBD and support the potential future use of serum miRs as useful noninvasive biomarkers.
Collapse
Affiliation(s)
- Alexandros Ο Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina K Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Legaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Savvas
- Companion Animal Clinic (Anesthesia and Intensive Care Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E Jergens
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Timoleon S Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Karin Allenspach
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA.
| |
Collapse
|
32
|
Chen H, Zeng L, Zheng W, Li X, Lin B. Increased Expression of microRNA-141-3p Improves Necrotizing Enterocolitis of Neonates Through Targeting MNX1. Front Pediatr 2020; 8:385. [PMID: 32850524 PMCID: PMC7399201 DOI: 10.3389/fped.2020.00385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: MicroRNA-141-3p (miR-141-3p) has been investigated in various kinds of cancers. This research delves into the functions and regulatory mechanisms of miR-141-3p in necrotizing enterocolitis (NEC) of neonates. Methods: NEC tissues were obtained from neonatal mice, and subsequently, expression of miR-141-3p and motor neuron and pancreas homeobox 1 (MNX1) was assayed via RT-qPCR. Moreover, the intestinal histopathological changes and histiocytic apoptosis were observed via hematoxylin and eosin (H&E) and TUNEL staining. The correlative inflammatory factors and oxidative stress markers were evaluated to uncover the influence of miR-141-3p in NEC tissue damage. Further, the relation between MNX1 and miR-141-3p was predicated, and the functions of MNX1 in inflammatory response and cell growth of IEC-6 cells were investigated. Results: Downregulated miR-141-3p and upregulated MNX1 were discovered in NEC tissues. Moreover, miR-141-3p clearly alleviated inflammation response and oxidative stress damage in NEC, which was achieved through regulating inflammatory cytokines (IL-1β, IL-6, and TNF-α) and oxidative stress markers (MPO, MDA, and SOD) expression. MNX1 was forecasted as a target gene of miR-141-3p; meanwhile, MNX1 overexpression overturned the influence of miR-141-3p in the inflammatory response and cell growth process of IEC-6 cells. Conclusion: These explorations reveal that increased expression of miR-141-3p could improve the damage to intestinal tissues in NEC through targeting MNX1. The research might exhibit a neoteric therapeutic strategy for NEC.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Lichun Zeng
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Wei Zheng
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xiaoli Li
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Baixing Lin
- Department of Neonatology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
33
|
Tian Y, Xu J, Li Y, Zhao R, Du S, Lv C, Wu W, Liu R, Sheng X, Song Y, Bi X, Li G, Li M, Wu X, Lou P, You H, Cui W, Sun J, Shuai J, Ren F, Zhang B, Guo M, Hou X, Wu K, Xue L, Zhang H, Plikus MV, Cong Y, Lengner CJ, Liu Z, Yu Z. MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology 2019; 156:2281-2296.e6. [PMID: 30779922 DOI: 10.1053/j.gastro.2019.02.023] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Levels of microRNA 31 (MIR31) are increased in intestinal tissues from patients with inflammatory bowel diseases and colitis-associated neoplasias. We investigated the effects of this microRNA on intestinal inflammation by studying mice with colitis. METHODS We obtained colon biopsy samples from 82 patients with ulcerative colitis (UC), 79 patients with Crohn's disease (CD), and 34 healthy individuals (controls) at Shanghai Tenth People's Hospital. MIR31- knockout mice and mice with conditional disruption of Mir31 specifically in the intestinal epithelium (MIR31 conditional knockouts) were given dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. We performed chromatin immunoprecipitation and luciferase assays to study proteins that regulate expression of MIR31, including STAT3 and p65, in LOVO colorectal cancer cells and organoids derived from mouse colon cells. Partially hydrolyzed alpha-lactalbumin was used to generate peptosome nanoparticles, and MIR31 mimics were loaded onto their surface using electrostatic adsorption. Peptosome-MIR31 mimic particles were encapsulated into oxidized konjac glucomannan (OKGM) microspheres, which were administered by enema into the large intestines of mice with DSS-induced colitis. Intestinal tissues were collected and analyzed by histology and immunohistochemistry. RESULTS Levels of MIR31 were increased in inflamed mucosa from patients with CD or UC, and from mice with colitis, compared with controls. STAT3 and nuclear factor-κB activated transcription of MIR31 in colorectal cancer cells and organoids in response to tumor necrosis factor and interleukin (IL)6. MIR31-knockout and conditional-knockout mice developed more severe colitis in response to DSS and TNBS, with increased immune responses, compared with control mice. MIR31 bound to 3' untranslated regions of Il17ra and Il7r messenger RNAs (RNAs) (which encode receptors for the inflammatory cytokines IL17 and IL7) and Il6st mRNA (which encodes GP130, a cytokine signaling protein). These mRNAs and proteins were greater in MIR31-knockout mice with colitis, compared with control mice; MIR31 and MIR31 mimics inhibited their expression. MIR31 also promoted epithelial regeneration by regulating the WNT and Hippo signaling pathways. OKGM peptosome-MIR31 mimic microspheres localized to colonic epithelial cells in mice with colitis; they reduced the inflammatory response, increased body weight and colon length, and promoted epithelial cell proliferation. CONCLUSIONS MIR31, increased in colon tissues from patients with CD or UC, reduces the inflammatory response in colon epithelium of mice by preventing expression of inflammatory cytokine receptors (Il7R and Il17RA) and signaling proteins (GP130). MIR31 also regulates the WNT and Hippo signaling pathways to promote epithelial regeneration following injury. OKGM peptosome-MIR31 microspheres localize to the colon epithelium of mice to reduce features of colitis. Transcript Profiling: GSE123556.
Collapse
Affiliation(s)
- Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengzhen Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi Wu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiwen You
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Cui
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China; Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, UK
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lixiang Xue
- Medical Research Center. Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, California
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
34
|
Kumar V, Torben W, Mansfield J, Alvarez X, Vande Stouwe C, Li J, Byrareddy SN, Didier PJ, Pahar B, Molina PE, Mohan M. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes. Front Immunol 2019; 10:914. [PMID: 31114576 PMCID: PMC6503054 DOI: 10.3389/fimmu.2019.00914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8). Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Vinay Kumar
- Nektar Therapeutics, South San Francisco, CA, United States
| | - Workineh Torben
- Department of Biological Sciences, LSU, Alexandria, LA, United States
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | | | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC, New Orleans, LA, United States.,LSUHSC Alcohol and Drug Abuse Center, New Orleans, LA, United States
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
35
|
Minacapelli CD, Bajpai M, Geng X, Van Gurp J, Poplin E, Amenta PS, Brant SR, Das KM. miR-206 as a Biomarker for Response to Mesalamine Treatment in Ulcerative Colitis. Inflamm Bowel Dis 2019; 25:78-84. [PMID: 30204869 DOI: 10.1093/ibd/izy279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-translational regulators. Elevated levels of miR-206 in ulcerative colitis (UC) were associated with suppression of anti-inflammatory A3 adenosine receptor (A3AR) expression. However, the relationship of miR-206 to histologic remission in UC patients remains unknown. This study correlates expression levels of miR-206 with histologic remission in patients treated via long-term mesalamine treatment to identify a possible mode of action for this mainstay drug for UC. METHODS Expression of miR-206 and its target A3AR were analyzed in HT29 cell line before and after mesalamine treatment (2 mM) at different time points (0, 4, 12, and 24 hours) by qRT-PCR and western blot analysis. Expression of miR-206 and pathological scores of colonoscopic biopsy specimens were studied in 10 UC patients treated with mesalamine treatment for 2 to 6 years. RESULTS miR-206 transcripts decreased 2.23-fold (P = 0.0001) 4 hours after 2 mM mesalamine treatment in HT29 colon cells compared with untreated controls. However, the mRNA/protein levels of A3AR increased by 4-fold (P = 0.04) and 2-fold, respectively, in same cells. miR-206 relative expression decreased significantly in patients treated with 4.8 g of mesalamine (P = 0.002) but not with 2.4 g (P = 0.35). Tissue assessment of sequential mesalamine-treated colonoscopic biopsies indicate a strong correlation between downregulation of miR-206 and histologic improvement (R = 0.9111). CONCLUSION Mesalamine treatment has an effect on epithelial miRNAs. Downregulation of miR-206 by long-term mesalamine treatment may confer a protective effect in inducing and maintaining histologic remission. Thus, miR-206 expression levels can be utilized as a possible biomarker for therapeutic response to mesalamine treatment.
Collapse
Affiliation(s)
- Carlos D Minacapelli
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Manisha Bajpai
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Xin Geng
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - James Van Gurp
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Peter S Amenta
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Steven R Brant
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kiron M Das
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
36
|
Tang WJ, Peng KY, Tang ZF, Wang YH, Xue AJ, Huang Y. MicroRNA-15a - cell division cycle 42 signaling pathway in pathogenesis of pediatric inflammatory bowel disease. World J Gastroenterol 2018; 24:5234-5245. [PMID: 30581272 PMCID: PMC6295831 DOI: 10.3748/wjg.v24.i46.5234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether cell division cycle (Cdc)42 is regulated by microRNA (miR)-15a in the development of pediatric inflammatory bowel disease (IBD).
METHODS We cultured 293T cells, used plasmids and performed dual-luciferase assay to determine whether Cdc42 is a miR-15a target gene. We cultured Caco-2 cells, and stimulated them with tumor necrosis factor (TNF)-α. We then employed lentiviruses to alter the expression of miR-15a and Cdc42. We performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence to determine whether Cdc42 is regulated by miR-15a in Caco-2 cells. Finally, we collected ileocecal tissue by endoscopy from patients and performed qRT-PCR to examine the expression of miR-15a and Cdc42 in pediatric IBD patients.
RESULTS Target Scan and dual-luciferase assay revealed that Cdc42 was a miR-15a target gene. MiR-15a expression increased (P = 0.0038) and Cdc42 expression decreased (P = 0.0013) in cells stimulated with TNF-α, and the expression of the epithelial junction proteins zona occludens (ZO)-1 (P < 0.05) and E-cadherin (P < 0.001) decreased. Cdc42 levels decreased in miR-15a-mimic cells (P < 0.001) and increased in miR-15a inhibitor cells (P < 0.05). ZO-1 and E-cadherin decreased in miR-15a-mimic cells (P < 0.001) but not in the miR-15a inhibitor + TNF-α cells. In Lv-Cdc42 + TNF-α cells, ZO-1 and E-cadherin expression increased compared to the Lv-Cdc42-NC + TNF-α (P < 0.05) or miR-15a-mimic cells (P < 0.05). Fifty-four pediatric IBD patients were included in this study, 21 in the control group, 19 in the Crohn’s disease (CD) active (AC) group, seven in the CD remission (RE) group, and seven in the ulcerative colitis (UC) group. MiR-15a increased and Cdc42 decreased in the CD AC group compared to the control group (P < 0.05). miR-15a decreased and Cdc42 increased in the CD RE group compared to the CD AC group (P < 0.05). miR-15a was positively correlated with the Pediatric Crohn’s disease Activity Index (PCDAI) (P = 0.006), while Cdc42 was negatively correlated with PCDAI (P = 0.0008). Finally, miR-15a expression negatively correlated with Cdc42 in pediatric IBD patients (P = 0.0045).
CONCLUSION MiR-15a negatively regulates epithelial junctions through Cdc42 in Caco-2 cells and pediatric IBD patients.
Collapse
Affiliation(s)
- Wen-Juan Tang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Kai-Yue Peng
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zi-Fei Tang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yu-Huan Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Ai-Juan Xue
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
37
|
Han J, Li Y, Zhang H, Guo J, Wang X, Kang Y, Luo Y, Wu M, Zhang X. MicroRNA-142-5p facilitates the pathogenesis of ulcerative colitis by regulating SOCS1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5735-5744. [PMID: 31949659 PMCID: PMC6963094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence suggests that abnormal levels of microRNAs (miRNAs) are associated with ulcerative colitis (UC). It has been demonstrated that microRNA (miR)-142-5p was upregulated in UC patients. However, it remains unclear what the role of miR-142-5p is in UC. METHODS Samples from patients with active UC and healthy controls were performed with miRNA microarray to identify miRNAs involved in the pathogenesis of UC. The results of quantitative RT-PCR verified that miR-142-5p was upregulated in UC patients. Meanwhile, the decreased expression of suppressor of cytokine signaling 1 (SOCS1) was also detected at mRNA and protein levels. The regulatory effect of miR-142-5p on SOCS1 was evaluated by luciferase reporter assay. Levels of IL-6 or IL-8 were detected by quantitative RT-PCR or enzyme-linked immunosorbent assay in HT-29 cells to evaluate the roles of SOCS1 or miR-142-5p in the progression of UC. RESULTS The expression level of miR-142-5p was significantly upregulated and inversely correlated with SOCS1. Luciferase experiments showed that miR-142-5p interfered with the expression of SOCS1 by directly targeting its 3'-UTR. Furthermore, the level of miR-142-5p plays an important role in the secretion of IL-6 and IL-8. Moreover, lost function of SOCS1 reversed the miR-142-5p inhibitory effect. CONCLUSIONS These results indicate that miR-142-5p improved the intestinal inflammation of active-UC patients by downregulating SOCS1 expression and increasing the cytokines IL-6 and IL-8 secretion.
Collapse
Affiliation(s)
- Jing Han
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
- Department of Physical Examination Center, The Second Hospital of Hebei Medical UniversityHebei, Shijiazhuang, China
| | - Yawei Li
- Department of Cardiology, The Third Hospital of ShijiazhuangShijiazhuang, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Jinbo Guo
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Xing Wang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Yaxing Kang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Yuxin Luo
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Mengyao Wu
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The East Branch of The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of GastroenterologyShijiazhuang, China
| |
Collapse
|
38
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Chao G, Wang Y, Ye F, Zhang S. Regulation of Colonic Mucosal MicroRNA Expression via Multiple Targets in Visceral Hypersensitivity Rats by Tongxieyaofang. Yonsei Med J 2018; 59:945-950. [PMID: 30187701 PMCID: PMC6127421 DOI: 10.3349/ymj.2018.59.8.945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study aimed to screen for differentially expressed microRNAs (miRNAs) in the colons of rats with visceral hypersensitivity to build the expression profiles of miRNAs therein and to determine the mechanism of Tongxieyaofang use in the treatment of irritable bowel syndrome (IBS). MATERIALS AND METHODS Forty Sprague-Dawley rats were divided randomly into four groups: control group, model control group (induced by rectum stimulus and evaluated by abdominal withdraw reaction), treatment control group (normal saline), and Tongxieyaofang group (treated with Tongxieyaofang). We screened for differential expression of colonic mucosal miRNAs using liquid chip technology and verified the expression thereof using reverse transcription-PCR. RESULTS The visceral hypersensitivity rat model was successfully established. We found the expression of let-7f, let-7i, miR-130b, miR-29a, miR-132, miR-21, and miR-375 to be up-regulated (p<0.05), while the expression of miR-24, miR-31a, miR-192, miR-221, and miR-223 was down-regulated (p<0.05) in the visceral hypersensitivity rats. After treatment with Tongxieyaofang, the expression of let-7f, let-7i, miR-130b, miR-29a, miR-132, miR-21, and miR-375 was reduced (p<0.05), whereas the expression of miR-24, miR-31a, miR-192, miR-221, miR-223 was increased, compared to the treatment control group (p<0.05). CONCLUSION MiRNAs play a pivotal role in visceral hypersensitivity and might be targets in the treatment of IBS by Tongxieyaofang.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yingying Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangxu Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
40
|
Li Z, Wang Y, Zhu Y. Association of miRNA-146a rs2910164 and miRNA-196 rs11614913 polymorphisms in patients with ulcerative colitis: A meta-analysis and review. Medicine (Baltimore) 2018; 97:e12294. [PMID: 30278502 PMCID: PMC6181578 DOI: 10.1097/md.0000000000012294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND It has been reported that the single nucleotide polymorphisms (SNPs) miRNA-196 (miR-196) rs11614913 and miRNA-146a (miR-146a) rs2910164 are related to susceptibility to ulcerative colitis (UC). Because the previously reported results have been mixed and uncertain, the aim of this study was to perform a meta-analysis and review to assess the relationship between these 2 SNPs and UC risk. METHODS In this analysis, 5 studies involving 1023 cases and 1769 controls for miR-196 rs11614913 and 4 studies involving 827 cases and 1451 controls for miR-146 rs2910164 were included. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to pool the effect size. RESULTS A decreased risk of UC was identified in homozygote comparison (GG vs CC: OR = 0.69, 95% CI: 0.52-0.93, P = .02), recessive comparison (GG vs CG + CC: OR = 0.74, 95% CI: 0.59-0.92, P = .007), and dominant comparison (GG + CG vs CC: OR = 0.79, 95% CI: 0.65-0.97, P = .02) of miR-146 rs2910164 in Asian but not Caucasian population. No evidence of an association was shown between the rs11614913 polymorphism and UC risk in allelic, heterozygote, homozygote, recessive, and dominant models in both Caucasian and Asian populations (P > .05). CONCLUSIONS MiR-146 rs2910164, but not miR-196 rs11614913, was associated with a decreased risk of UC in Asian population. However, the results should be treated with caution because of the limited sample size and heterogeneity. Well-designed studies with large sample sizes and more ethnic groups are needed to validate the risks identified in the current meta-analysis and review.
Collapse
Affiliation(s)
- Zhongyi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University
| | - Yao Wang
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong Province
| | - Yi Zhu
- Department of Gastroenterological Surgery, First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| |
Collapse
|
41
|
Omidbakhsh A, Saeedi M, Khoshnia M, Marjani A, Hakimi S. Micro-RNAs -106a and -362-3p in Peripheral Blood of Inflammatory Bowel Disease Patients. Open Biochem J 2018; 12:78-86. [PMID: 30069249 PMCID: PMC6040212 DOI: 10.2174/1874091x01812010078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Objective MicroRNAs (miRNAs) can regulate various genes after binding to target mRNAs. Studies on Inflammatory Bowel Disease (IBD) in relation with miRNA are much less shown. The aim of the present study was to assess the expression patterns of microRNA 106a and microRNA 362-3p in peripheral blood samples of Inflammatory Bowel Disease (IBD) patients including Crohn's Disease(CD) and Ulcerative Colitis (UC). Methods This study consisted of 32 CD, 32 UC patients and 32 controls. The expression level of the micro-RNAs -106a and -362-3p was determined using reverse transcription and real-time RT-PCR. Results Our findings showed that MiR-106a and miR-362-3p are expressed at significantly higher levels in the peripheral blood from patients with CD and UC compared to controls. MiR-106a and miR-362-3p expression are also different in the peripheral blood of patients regarding the activity score of the disease. There were significant differences of miR362-3p in active UC relative to inactive UC. Conclusion Altogether our findings suggest that miR-106a and miR-363-3p can play an important role in the pathogenesis of IBD. The differences in expression of miR106a and miR362-3p in peripheral blood of the UC and CD patients in an active phase in comparison to inactive disease suggest that these miRNAs may be useful as potential biomarkers for diagnosis and monitoring the disease activity.
Collapse
Affiliation(s)
- Ameneh Omidbakhsh
- Student Research Committee, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Masoud Khoshnia
- Golestan Research Center of Gastroenterology and Hepatology, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Safoura Hakimi
- Student Research Committee, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| |
Collapse
|
42
|
Citrobacter rodentium alters the mouse colonic miRNome. Genes Immun 2018; 20:207-213. [PMID: 29728609 DOI: 10.1038/s41435-018-0026-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Citrobacter rodentium is a murine pathogen causing transmissible colonic hyperplasia and colitis with a pathogenic mechanism similar to foodborne enterohaemorrhagic Escherichia coli in humans. Mechanisms underlying intestinal responses to C. rodentium infection are incompletely understood. We identified 24 colonic microRNAs (miRNAs) as significantly deregulated in response to C. rodentium, including miR-7a, -17, -19a, -20a, -20b, -92a, -106a, -132, -200a, and -2137; most of these miRNAs belong to the oncogenic miR-17-92 clusters. Pathways involved in cell cycle, cancers, and immune responses were enriched among the predicted targets of these miRNAs. We further demonstrated that an apoptosis facilitator, Bim, is a candidate gene target of miRNA-mediated host response to the infection. These findings suggest that host miRNAs participate in C. rodentium pathogenesis and may represent novel treatment targets.
Collapse
|
43
|
Wu W, He Y, Feng X, Ye S, Wang H, Tan W, Yu C, Hu J, Zheng R, Zhou Y. MicroRNA-206 is involved in the pathogenesis of ulcerative colitis via regulation of adenosine A3 receptor. Oncotarget 2018; 8:705-721. [PMID: 27893428 PMCID: PMC5352191 DOI: 10.18632/oncotarget.13525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/12/2016] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that miRNAs are widely dysregulated in ulcerative colitis (UC), potentially affecting UC pathogenesis, diagnosis, and therapy. microRNA (miR) -206 has been reported to be upregulated in UC; however, its function and role in UC remain unknown. Here, we elucidate the function of miR-206 in the pathogenesis of UC. In patients with active-UC, miR-206 and adenosine A3 receptor (A3AR) levels were significantly upregulated and downregulated, respectively, and were inversely correlated. A3AR was expressed in the colon mucosa (particularly in colon epithelial-cell membranes). In HT-29 cells, miR-206 downregulated A3AR mRNA/protein expression by directly targeting the A3AR 3'-UTR; miR-206 overexpression and knockdown respectively increased and decreased TNF-α-induced nuclear NF-κB/p65, p-IκB-α, IKKα, p-IKKα and IL-8/IL-1β secretion. However, A3AR-siRNA reversed the miR-206 inhibitory effect. Furthermore, miR-206 increased dextran sodium sulphate-induced colitis severity (i.e., increased bodyweight loss, DAI score, colon shrinkage, and MPO activity), which was partially ameliorated by miR-206-antagomir treatment. miR-206-agomir treatment potently suppressed A3AR expression and increased NF-κB signalling and downstream cytokine (TNF-α/IL-8/IL-1β) expression in the mouse colon, in contrast to miR-206-antagomir administration. Taken together, our results demonstrated that miR-206 has a proinflammatory role in UC by downregulating A3AR expression and activating NF-κB signalling.
Collapse
Affiliation(s)
- Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yanting He
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiao Feng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hao Wang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wenkai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Juxiang Hu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Rong Zheng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
44
|
Epithelial-mesenchymal transition in Crohn's disease. Mucosal Immunol 2018; 11:294-303. [PMID: 29346350 DOI: 10.1038/mi.2017.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is often accompanied by the complications of intestinal strictures and fistulas. These complications remain obstacles in CD treatment. In recent years, the importance of epithelial-mesenchymal transition in the pathogenesis of CD-associated fistulas and intestinal fibrosis has become apparent. Epithelial-mesenchymal transition refers to a dynamic change, wherein epithelial cells lose their polarity and adherence and acquire migratory function and fibroblast features. During formation of CD-associated fistulas, intestinal epithelial cells dislocate from the basement membrane and migrate to the lining of the fistula tracts, where they convert into transitional cells as a compensatory response under the insufficient wound healing condition. In CD-associated intestinal fibrosis, epithelial-mesenchymal transition may serve as a source of new fibroblasts and consequently lead to overproduction of extracellular matrix. In this review, we present current knowledge of epithelial-mesenchymal transition and its role in the pathogenesis of CD in order to highlight new therapy targets for the associated complications.
Collapse
|
45
|
ElSharawy A, Röder C, Becker T, Habermann JK, Schreiber S, Rosenstiel P, Kalthoff H. Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations. Oncotarget 2018; 7:75353-75365. [PMID: 27683108 PMCID: PMC5342746 DOI: 10.18632/oncotarget.12205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
The emerging potential of miRNAs as biomarkers for cancer detection demands parallel evaluation of strategies for reliable identification of disease-related signatures from easily accessible and pertinent body compartments. Here, we addressed whether efficient concentration of circulating miRNA-carrying particles is a rationale for miRNA biomarker discovery. We systematically compared miRNA signatures in 93 RNA preparations from three serum entities (whole serum, particle-concentrated, and particle-depleted fractions) and corresponding tissue samples from patients with colorectal cancer (CRC) as a model disease. Significant differences between whole sera and particle-concentrated serum fractions of CRC patients emerged for 45 of 742 tested miRNAs. Twenty-eight of these 45 miRNAs were differentially expressed between particle-concentrated serum fractions of metastatic CRC- and healthy individuals. Over half of these candidates (15 of 28) showed deregulations only in concentrated serum fractions, but not in whole sera, compared to the respective controls.Our results also provided evidence of a consistent downregulation of miR-486 and miR-92a, and further showed a possible "strand-specific" deregulation of extracellular miRNAs in CRC. More importantly, most of the identified miRNAs in the enriched sera reflected the patterns of the corresponding tumor tissues and showed links to cancer-related inflammation. Further investigation of seven serum pools revealed a subset of potential extracellular miRNA candidates to be implicated in both neoplastic and inflammatory bowel disease.Our findings demonstrate that enrichment and sensitive detection of miRNA carriers is a promising approach to detect CRC-related pathological changes in liquid biopsies, and has potential for clinical diagnostics.
Collapse
Affiliation(s)
- Abdou ElSharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.,Faculty of Sciences, Division of Biochemistry, Department of Chemistry, Damietta University, New Damietta City, Egypt
| | - Christian Röder
- Institute for Experimental Cancer Research, Christian-Albrechts-University, Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.,Clinic for Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
46
|
Jiang D, Wang H, Li Z, Li Z, Chen X, Cai H. MiR-142 inhibits the development of cervical cancer by targeting HMGB1. Oncotarget 2018; 8:4001-4007. [PMID: 27829233 PMCID: PMC5354809 DOI: 10.18632/oncotarget.13136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 01/01/2023] Open
Abstract
It has been reported that miRNAs is deregulated in diverse human cancers, involving human cervical cancer. However, the clinical significances and potential mechanisms of miR-142 in the development and progression of cervical cancer were not elucidated completely till now. In this study, we found that the expression of miR- 142 was obviously down-regulated in human cervical cancer tissues and a panel of cell lines. According to statistics, the expression of miR-142 was negatively related to advanced FIGO stage and lymphatic metastasis (p < 0.001). Furthermore, our functional analysis revealed the overexpression of miR-142 affected cell proliferation and invasiveness, and enhanced cell apoptosis in representative SiHa and HeLa cells. Based on the molecular level, our findings showed the 3′ untranslated region (3′-UTR) of high-mobility group box 1 protein (HMGB1) was a direct target of miR-142, and determined an inverse correlation with the expression of miR-142. Ectopic expression of HMGB1 could attenuate the inhibitory impact of miR-142 on the proliferation and invasiveness of cervical cancer cells. In conclusion, the present work suggested that miR-142 affects cervical cancer cell proliferation and invasiveness, and enhances cell apoptosis via directly targeting the expression of HMGB1, and these findings may lay a novel foundation for the promising therapy target of cervical cancer.
Collapse
Affiliation(s)
- Daqiong Jiang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan 430071, Hubei, P.R. China
| | - Huiyan Wang
- Department of Gynecological Oncology, Hospital of Wuhan University of Technology, Wuhan 430070, Hubei, P.R. China
| | - Zhuyan Li
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan 430071, Hubei, P.R. China
| | - Zhen Li
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan 430071, Hubei, P.R. China
| | - Xin Chen
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan 430071, Hubei, P.R. China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan 430071, Hubei, P.R. China
| |
Collapse
|
47
|
Chu F, Hu Y, Zhou Y, Guo M, Lu J, Zheng W, Xu H, Zhao J, Xu L. MicroRNA-126 deficiency enhanced the activation and function of CD4 + T cells by elevating IRS-1 pathway. Clin Exp Immunol 2018; 191:166-179. [PMID: 28987000 PMCID: PMC5758368 DOI: 10.1111/cei.13067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 01/01/2023] Open
Abstract
Recent evidence has shown that microRNA-126 (miR-126) has been involved in the development and function of immune cells, which contributed to the pathogenesis of related clinical diseases. However, the potential role of miR-126 in the development and function of CD4+ T cells remains largely unknown. Here we first found that the activation and proliferation, as well as the expression of interferon (IFN)-γ, of CD4+ T cells from miR-126 knock-down (KD) mice using the miRNA-sponge technique were enhanced significantly in vitro, compared with those in CD4+ T cells from wild-type (WT) mice. To monitor further the possible effect of miR-126 deficiency on the function of CD4+ T cells in vivo, we used dextran sulphate sodium (DSS)-induced murine model of acute autoimmune colitis and found that miR-126 deficiency could elevate the pathology of colitis. Importantly, the proportion of CD4+ T cells in splenocytes increased significantly in miR-126KD mice. Moreover, the expression levels of CD69 and CD44 on CD4+ T cells increased significantly and the expression level of CD62L decreased significantly. Of note, adoptive cell transfer assay showed that the pathology of colitis was more serious in carboxyfluorescein succinimidyl ester (CFSE)-labelled miR-126KD CD4+ T cell-transferred group, compared with that in the CFSE-labelled WT CD4+ T cells transferred group. Consistently, the expression levels of CD69 and CD44 on CFSE+ cells increased significantly. Furthermore, both the proliferation and IFN-γ secretion of CFSE+ cells also increased significantly in the CFSE-labelled miR-126KD CD4+ T cell-transferred group. Mechanistic evidence showed that the expression of insulin receptor substrate 1 (IRS-1), as a functional target of miR-126, was elevated in CD4+ T cells from miR-126KD mice, accompanied by altered transduction of the extracellular regulated kinase, protein B (AKT) and nuclear factor kappa B (NF-κB) pathway. Our data revealed a novel role in which miR-126 was an intrinsic regulator in the function of CD4+ T cells, which provided preliminary basis for exploring further the role of miR-126 in the development, function of CD4+ T cells and related clinical diseases.
Collapse
Affiliation(s)
- F. Chu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - Y. Hu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - Y. Zhou
- Department of Medical PhysicsZunyi Medical CollegeGuizhouChina
| | - M. Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - J. Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - W. Zheng
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - H. Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - J. Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| | - L. Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Provincial Education DepartmentGuizhouChina
- Department of ImmunologyZunyi Medical CollegeGuizhouChina
| |
Collapse
|
48
|
Li Y, Wu Y. MiR-200-3p inhibits tumor cell proliferation and induces apoptosis by upregulation of FOXO1 in osteosarcoma cells. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0009-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
MicroRNA in gastrointestinal cell signalling. Inflammopharmacology 2017; 26:1-14. [PMID: 29110118 DOI: 10.1007/s10787-017-0414-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Our gut forms an important organ and its formation, functioning and homeostasis are maintained by several factors including cell signalling pathways and commensal microflora. These factors affect pathological, physiological and immunological parameters to maintain gut health and prevent its inflammation. Among these, different intracellular signalling pathways play an important role in regulating gut homeostasis. These pathways are in turn regulated by various microRNAs that play a key role in maintaining the balance between tolerance and inflammation. This review highlights the importance of various cell signalling pathways in modulating gut homeostasis and the role specific miRNAs play in their regulation.
Collapse
|
50
|
Zacharopoulou E, Gazouli M, Tzouvala M, Vezakis A, Karamanolis G. The contribution of long non-coding RNAs in Inflammatory Bowel Diseases. Dig Liver Dis 2017; 49:1067-1072. [PMID: 28869157 DOI: 10.1016/j.dld.2017.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/23/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBDs) are multifactorial autoimmune diseases with growing prevalence but the interaction between genetic, environmental and immunologic factors in their development is complex and remains obscure. There is great need to understand their pathogenetic mechanisms and evolve diagnostic and therapeutic tools. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that are known to interfere in gene regulation but their roles and functions have not yet been fully understood. While they are widely investigated in cancers, little is known about their contribution in other diseases. There is growing evidence that lncRNAs play critical role in regulation of immune system and that they interfere in the pathogenetic mechanisms of autoimmune diseases, like IBDs. Recent studies have identified lncRNAs in the proximity of IBD-associated genes and single nucleotide polymorphisms within IBD-associated lncRNAs as well. Furthermore, blood samples and pinch biopsies were also analyzed and a plethora of lncRNAs are found to be deregulated in Crohn's disease (CD), Ulcerative colitis (UC) or both. (Especially in UC samples the lncRNAs INFG-AS1 and BC012900 were found to be significantly up-regulated. Similarly, ANRIL, a lncRNA that nest different disease associated SNPs, is significantly down-regulated in inflamed IBD tissue.) This review aims at recording for the first time recent data about lncRNAs found to be deregulated in IBDs and discussing suggestive pathogenetic mechanisms and future use of lncRNAs as biomarkers.
Collapse
Affiliation(s)
- Eirini Zacharopoulou
- Department of Gastroenterology, General Hospital of Nikea and Piraeus "Agios Panteleimon", Nikea, Greece.
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tzouvala
- Department of Gastroenterology, General Hospital of Nikea and Piraeus "Agios Panteleimon", Nikea, Greece
| | - Antonios Vezakis
- 2nd Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Karamanolis
- Academic Department of Gastroenterology, Laiko General Hospital, Medical School, Athens University, Athens, Greece
| |
Collapse
|