1
|
Rauf A, Olatunde A, Islam MR, Ahmad Z, Hafeez N, Hemeg HA, Imran M, Mubarak MS, Ribaudo G. Acetylsalicylic acid and cancer: updates on the new potential of a nature-inspired drug. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03959-6. [PMID: 40021514 DOI: 10.1007/s00210-025-03959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Acetylsalicylic acid (ASA), commonly known as aspirin, is an organic compound with the formula C9H8O4 obtained from the natural compound salicylic acid, recognized for its analgesic, anti-inflammatory, antipyretic, and anticancer properties. Its role in medicine and plant biology is well-established, but its emerging potential in cancer treatment has garnered increased attention. This review aims to provide a comprehensive overview of the therapeutic applications of ASA as an anticancer agent, focusing on its mechanisms, effectiveness, and role as an adjuvant therapy, preventive compound, and radioprotective agent. Recent research papers, including mechanistic studies, preclinical investigations, and clinical trials related to the effects of ASA on various cancer types, were reviewed. The review places particular emphasis on the enhancement of traditional chemotherapy drugs by ASA and considers toxicological aspects. The analysis of recent studies highlights the potential of ASA to improve the effectiveness of chemotherapy and its role in cancer inhibition through specific molecular pathways. Mechanistic insights suggest that ASA may influence cellular processes that contribute to cancer growth suppression and increased sensitivity to conventional treatments. ASA exhibits promising potential as an adjunct therapy in cancer treatment, with evidence supporting its benefits in improving therapeutic outcomes when used alongside conventional chemotherapy. Further studies are needed to clarify its mechanisms and ensure its safe and effective application in clinical settings.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan.
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, KPK, KPK-25120, Pakistan
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawra, 41411, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammad S Mubarak
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| |
Collapse
|
2
|
Yadav SN, Al Hasan MS, Das B, Shadin M, Rakib IH, Rohan F, Ansari SA, Ansari IA, Bhuia MS, Lima MA, Domiciano CB, Coutinho HDM, Islam MT. Assessment of clot-lysing and membrane-stabilizing capacity of ascorbic acid: In vitro approach with molecular docking. Toxicol Rep 2024; 13:101831. [PMID: 39687679 PMCID: PMC11646741 DOI: 10.1016/j.toxrep.2024.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to evaluate the clot-lysing and membrane stabilizing capacities of ascorbic acid (AA) using in vitro and in silico methods. For this, we used in vitro clot lysis and hemolyzing tests to check the anti-atherothrombosis and membrane-stabilizing properties of AA, respectively. Additionally, molecular docking studies were performed to investigate AA's interactions with cyclooxygenase-1 (COX-1) and plasminogen enzymes. Findings suggest that AA exhibited a concentration-dependent effect, with 43.95 ± 1.27 % clot lysis and 64.46 ± 0.01 % membrane stabilization at 100 µg/mL. The IC50 values for clot lysis and membrane stabilization were 215.19 ± 1.09 and 57.21 ± 2.11 µg/mL, respectively. In silico analysis showed strong binding affinities of AA with COX-1 (-6.2 kcal/mol) and plasminogen (-5.8 kcal/mol), supporting its observed clot lysis and membrane protection activities. Taken together, AA showed moderate clot-lysing and robust membrane-stabilizing effects, which may be due to its strong antioxidant and anti-inflammatory properties. AA might be a good therapeutic agent for atherothrombosis and membrane damage, highlighting the need for further investigation into its underlying molecular mechanisms and potential clinical applications. AA shows promising clot-lysing and membrane-stabilizing effects, highlighting its therapeutic potential for atherothrombosis and membrane damage.
Collapse
Affiliation(s)
- Shuv Narayan Yadav
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Balaram Das
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Shadin
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Imam Hossen Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Fazley Rohan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin 10124, Italy
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | | | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
3
|
Mager LF, Krause T, McCoy KD. Interaction of microbiota, mucosal malignancies, and immunotherapy-Mechanistic insights. Mucosal Immunol 2024; 17:402-415. [PMID: 38521413 DOI: 10.1016/j.mucimm.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The microbiome has emerged as a crucial modulator of host-immune interactions and clearly impacts tumor development and therapy efficacy. The microbiome is a double-edged sword in cancer development and therapy as both pro-tumorigenic and anti-tumorigenic bacterial taxa have been identified. The staggering number of association-based studies in various tumor types has led to an enormous amount of data that makes it difficult to identify bacteria that promote tumor development or modulate therapy efficacy from bystander bacteria. Here we aim to comprehensively summarize the current knowledge of microbiome-host immunity interactions and cancer therapy in various mucosal tissues to find commonalities and thus identify potential functionally relevant bacterial taxa. Moreover, we also review recent studies identifying specific bacteria and mechanisms through which the microbiome modulates cancer development and therapy efficacy.
Collapse
Affiliation(s)
- Lukas F Mager
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Internal Medicine I, Faculty of Medicine, University of Tübingen, Germany; M3 Research Center for Malignom, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Germany
| | - Tim Krause
- Department of Internal Medicine I, Faculty of Medicine, University of Tübingen, Germany; M3 Research Center for Malignom, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Germany
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
4
|
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Parn S, Lewis G, Knight M. Inhibition of carbonic anhydrase using aspirin is a novel method to block schistosomiasis infection of the parasitic trematode, Schistosoma mansoni, in the intermediate snail host, Biomphalaria glabrata. Exp Parasitol 2023; 254:108618. [PMID: 37696327 DOI: 10.1016/j.exppara.2023.108618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Schistosomiasis is a major public health concern worldwide. Although praziquantel is currently available as the only treatment option for schistosomiasis, the absence of reliable diagnostic and prognostic tools highlights the need for the identification and characterization of new drug targets. Recently, we identified the B. glabrata homolog (accession number XP_013075832.1) of human CAXIV, showing 37% amino acid sequence identity, from a BLAST search in NCBI (National Center for Biotechnology Information). Carbonic Anhydrases (CAs) are metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. These enzymes are associated with many physiological processes, and their role in tumorigenesis has been widely implicated. CAs create an acidic extracellular environment that facilitates the survival, metastasis, and growth of cancer cells. In this study, we investigated the role of CA inhibition in B. glabrata snails exposed to S. mansoni miracidia. We analyzed the expression of the B. glabrata CA encoding transcript in juvenile susceptible and resistant snails, with and without exposure to S. mansoni. Our results showed that the expression of the CA mRNA encoding transcript was upregulated during early and prolonged infection in susceptible snails (BBO2), but not in the resistant BS-90 stock. Notably, sodium salicylate, a form of aspirin, inhibited the expression of CA, post-exposure, to the parasite. Increasing research between parasites and cancer has shown that schistosomes and cancer cells share similarities in their capacity to proliferate, survive, and evade host immune mechanisms. Here, we show that this model system is a potential new avenue for understanding the role of CA in the metastasis and proliferation of cancer cells. Further studies are needed to explore the potential of CA as a biomarker for infection in other schistosomiasis-causing parasites, including S. japonicum and S. haematobium.
Collapse
Affiliation(s)
- Simone Parn
- Division of Science & Mathematics, University of the District of Columbia, 4200 Connecticut Ave, NW Washington, D.C., 20008, USA
| | - Gabriela Lewis
- Division of Science & Mathematics, University of the District of Columbia, 4200 Connecticut Ave, NW Washington, D.C., 20008, USA
| | - Matty Knight
- Division of Science & Mathematics, University of the District of Columbia, 4200 Connecticut Ave, NW Washington, D.C., 20008, USA; Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University Ross Hall, 2300 I Street, NW Washington DC, 20037, USA.
| |
Collapse
|
6
|
Jalili M, Tavakoli S, Kargar K, Rafat M, Rad FR. Spotlight on the Expanding Role of miR-647 in Human Cancers. Adv Biomed Res 2023; 12:170. [PMID: 37564440 PMCID: PMC10410432 DOI: 10.4103/abr.abr_369_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 08/12/2023] Open
Abstract
MicroRNAs are a large group of small, non-coding ssRNAs (miRNAs) that have an epigenetically pivotal role in gene expression and other biological processes in cells and can be regarded as capable biomarkers for the early detection and management of cancer. The aim of the present review article is to summarize the evidence for recognizing the molecular mechanism, target genes, and clinical significance of miR-647 in different cancers. Multiple studies have demonstrated that aberrant expression of miR-647 could be found in a variety of malignancies, such as bladder cancer, cervical cancer, colorectal cancer, gastric cancer, glioma, hepatocellular carcinoma, non-small cell lung cancer, ovarian cancer, and prostate cancer have reported, notably, increase or decrease in expression of miR-647 so that it can function as a tumorigenic (oncomiR) or tumor suppressor gene. MiR-647 is effective in the proliferation, migration, and invasion of cancer cells by playing a function in cell cycle pathways. MiR-647 can be a valuable potential biomarker for assessing the extent of cancer, prognosis, and response to therapy and shows great therapeutic efficacy in different solid tumors. Moreover, serum concentrations of miR-647 are directly effective in decreasing overall survival and disease progression. So, an efficient therapeutic target can be the effect on miR-647 expression by antitumor drugs.
Collapse
Affiliation(s)
| | - Setayesh Tavakoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Kargar
- Department of Prosthodontics, Shahed Medical University, Tehran, Iran
| | - Milad Rafat
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh R. Rad
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rafat M, Kohsarian M, Bahiraei M, Nikpoor AR. A Comprehensive Study on Signal Transduction and Therapeutic Role of miR-877 in Human Cancers. Adv Biomed Res 2023; 12:118. [PMID: 37434921 PMCID: PMC10331537 DOI: 10.4103/abr.abr_412_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 07/13/2023] Open
Abstract
MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence in order to reach the molecular mechanism and clinical significance of miR-877 in different types of cancer. Dysregulation of miR-877 level in various types of malignancies as bladder cancer, cervical cancer, cholangiocarcinoma, colorectal cancer (CRC), gastric cancer, glioblastoma, head and neck squamous cell carcinoma (HNSCC), hepatocellular carcinoma, laryngeal squamous cell carcinoma, melanoma, non-small cell lung cancer (NSCLC), oral squamous cell carcinoma, ovarian cancer (OC), pancreatic ductal adenocarcinoma, and renal cell carcinoma (RCC) have reported, significantly increase or decrease in its level, which can be indicated to its function as oncogene or tumor suppressor. MiR-877 is involved in cell proliferation, migration, and invasion through cell cycle pathways in cancer. MiR-877 could be potential a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-877 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.
Collapse
Affiliation(s)
- Milad Rafat
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdis Kohsarian
- Department of Biology, Faculty of Science, Guilan University, Rasht, Iran
| | - Mohamad Bahiraei
- Department of Radiology, Besat Hospital, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Amin R. Nikpoor
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Crosstalk between hemostasis and immunity in cancer pathogenesis. Thromb Res 2022; 213 Suppl 1:S3-S7. [DOI: 10.1016/j.thromres.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
|
9
|
Wang Y, Boland CR, Goel A, Wodarz D, Komarova NL. Aspirin's effect on kinetic parameters of cells contributes to its role in reducing incidence of advanced colorectal adenomas, shown by a multiscale computational study. eLife 2022; 11:71953. [PMID: 35416770 PMCID: PMC9007589 DOI: 10.7554/elife.71953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aspirin intake has been shown to lead to significant protection against colorectal cancer, for example with an up to twofold reduction in colorectal adenoma incidence rates at higher doses. The mechanisms contributing to protection are not yet fully understood. While aspirin is an anti-inflammatory drug and can thus influence the tumor microenvironment, in vitro and in vivo experiments have recently shown that aspirin can also have a direct effect on cellular kinetics and fitness. It reduces the rate of tumor cell division and increases the rate of cell death. The question arises whether such changes in cellular fitness are sufficient to significantly contribute to the epidemiologically observed protection. To investigate this, we constructed a class of mathematical models of in vivo evolution of advanced adenomas, parameterized it with available estimates, and calculated population level incidence. Fitting the predictions to age incidence data revealed that only a model that included colonic crypt competition can account for the observed age-incidence curve. This model was then used to predict modified incidence patterns if cellular kinetics were altered as a result of aspirin treatment. We found that changes in cellular fitness that were within the experimentally observed ranges could reduce advanced adenoma incidence by a sufficient amount to account for age incidence data in aspirin-treated patient cohorts. While the mechanisms that contribute to the protective effect of aspirin are likely complex and multi-factorial, our study demonstrates that direct aspirin-induced changes of tumor cell fitness can significantly contribute to epidemiologically observed reduced incidence patterns.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Mathematics, University of California Irvine, Irvine, United States
| | - C Richard Boland
- Department of Medicine, University of California San Diego School of Medicine, San Diego, United States
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, United States
| | - Dominik Wodarz
- Department of Mathematics, University of California Irvine, Irvine, United States.,Department of Population Health and Disease Prevention, University of California Irvine, Irvine, United States
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, United States
| |
Collapse
|
10
|
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AM, Ming LC, Goh KW, Hadi MA. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 2022; 14:1732. [PMID: 35406504 PMCID: PMC8996939 DOI: 10.3390/cancers14071732] [Citation(s) in RCA: 380] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer. Global incidence and mortality are likely to be increased in the coming decades. Although the deaths associated with CRC are very high in high-income countries, the incidence and fatalities related to CRC are growing in developing countries too. CRC detected early is entirely curable by surgery and subsequent medications. However, the recurrence rate is high, and cancer drug resistance increases the treatment failure rate. Access to early diagnosis and treatment of CRC for survival is somewhat possible in developed countries. However, these facilities are rarely available in developing countries. Highlighting the current status of CRC, its development, risk factors, and management is crucial in creating public awareness. Therefore, in this review, we have comprehensively discussed the current global epidemiology, drug resistance, challenges, risk factors, and preventive and treatment strategies of CRC. Additionally, there is a brief discussion on the CRC development pathways and recommendations for preventing and treating CRC.
Collapse
Affiliation(s)
- Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
| | - Hidayah Karuniawati
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia
| | - Ammar Abdulrahman Jairoun
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Der Jiun Ooi
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Ya Chee Lim
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - K. M. Kaderi Kibria
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - A.K. M. Mohiuddin
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | | |
Collapse
|
11
|
Rafat M, Yadegar N, Dadashi Z, Shams K, Mohammadi M, Abyar M. The prominent role of miR-942 in carcinogenesis of tumors. Adv Biomed Res 2022; 11:63. [PMID: 36133499 PMCID: PMC9483553 DOI: 10.4103/abr.abr_226_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.
Collapse
|
12
|
Lee KP, Baek S, Yoon MS, Park JS, Hong BS, Lee SJ, Oh SJ, Kwon SH, Lee R, Lee DH, Park KS, Moon BS. Potential anticancer effect of aspirin and 2'-hydroxy-2,3,5'-trimethoxychalcone-linked polymeric micelles against cervical cancer through apoptosis. Oncol Lett 2021; 23:31. [PMID: 34966447 PMCID: PMC8669688 DOI: 10.3892/ol.2021.13149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Although early diagnosis and treatment of cancers in women are achievable through continuous diagnostic tests, cervical cancer (CVC) still has a high mortality rate. In the present study, we investigated whether certain nanoparticles (NPs), comprising aspirin conjugated 2′-hydroxy-2,3,5′-trimethoxychalcone chemicals, could induce the apoptosis of cancer cells. HeLa cells were treated with NPs and the cell viability was evaluated using WST-1 assay. Protein expression of Ki-67 was measured using immunocytochemistry. In addition, the apoptotic effect of NPs was determined using TUNEL assay. To investigate the apoptosis signaling pathways, reverse transcription quantitative PCR was performed and lipid accumulation was observed via holotomographic microscopy. The IC50 value of the NPs was 4.172 µM in HeLa cells. Furthermore, 10 µM NPs significantly inhibited the cell proliferation and stimulated the apoptosis of HeLa cells. In addition, apoptosis and mitochondrial dysfunction were induced by the NPs through lipid accumulation in HeLa cells, leading to apoptotic signaling cascades. Taken together, the results from the present study demonstrated that the NPs developed promoted apoptosis though efficient lipid accumulation in HeLa cells, suggesting that they may provide a novel way to improve the efficacy of CVC anticancer treatment.
Collapse
Affiliation(s)
- Kang Pa Lee
- Research and Development Center, UMUST R&D Corporation, Seoul 01411, Republic of Korea.,Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Suji Baek
- Research and Development Center, UMUST R&D Corporation, Seoul 01411, Republic of Korea
| | - Myeong Sik Yoon
- Department of Pharmaceutical Engineering, Hoseo University, Cheonan, Chungnam 31499, Republic of Korea
| | - Ji Soo Park
- Department of Pharmaceutical Engineering, Hoseo University, Cheonan, Chungnam 31499, Republic of Korea
| | - Bok Sil Hong
- Department of Nursing, Cheju Halla University, Jeju 63092, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Hae Kwon
- Seoul Center, Korean Basic Science Institute, Seoul 02841, Republic of Korea
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
13
|
Suman S, Kumar S, Moon BH, Angdisen J, Kallakury BVS, Datta K, Fornace AJ. Effects of dietary aspirin on high-LET radiation-induced prostaglandin E2 levels and gastrointestinal tumorigenesis in Apc 1638N/+ mice. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:85-91. [PMID: 34689954 PMCID: PMC9808916 DOI: 10.1016/j.lssr.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 05/21/2023]
Abstract
Inevitable exposure to high-LET ionizing radiation (IR) present in galactic cosmic radiation (GCR) could enhance gastrointestinal (GI) cancer incidence among astronauts undertaking deep space exploration and GI-cancer mortality has been predicted to far exceed NASA's limit of < 3% REID (Radiation exposure-induced death) from cancer. Therefore, the development of countermeasure agents against high-LET radiation-induced GI cancer is needed to safeguard astronauts during and after an outer space mission. The cyclooxygenase-2/prostaglandin E2 (COX2/PGE2) mediated activation of pro-inflammatory and oncogenic signaling has been reported to play an important role in persistent inflammation and GI-tumorigenesis after high-LET radiation exposure. Therefore, aspirin, a well-known inhibitor of the COX/PGE2 pathway, was evaluated as a potential countermeasure against 28Si-induced PGE2 and tumorigenesis in Apc1638N/+, a murine model of human GI-cancer. Animals were fed either standard or aspirin supplemented diet (75, 150, or 300 mg/day of human equivalent dose) starting at the age of 4 weeks and continued till the end of the study, while mice were exposed to 28Si-ions (300 MeV/n; 69 keV/μm) at the age of 8 weeks. Serum PGE2 level, GI tumor size (>2mm2), number, and cluster (>5 adjoining tumors) were analyzed at 150 days post-exposure. Aspirin led to a significant reduction in PGE2 in a dose-dependent manner but did not reduce 28Si-induced GI tumorigenesis even at the highest (300 mg/day) dose. In summary, this study suggests that aspirin could reduce high-LET IR-induced pro-inflammatory PGE2 levels, however, lacks the ability to reduce high-LET IR-induced GI tumorigenesis in Apc1638N/+ mice.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
14
|
Rafat M, Moraghebi M, Afsa M, Malekzadeh K. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell 2021; 34:1051-1065. [PMID: 33997944 DOI: 10.1007/s13577-021-00544-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence to reach the molecular mechanism and clinical significance of miR-132 in different types of cancer. Dysregulation of miR-132 level in various types of malignancies, including hepatocellular carcinoma, breast cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, osteosarcoma, pancreatic cancer, and ovarian cancer have reported, significantly decrease in its level, which can be indicated to its function as a tumor suppressor. miR-132 is involved in cell proliferation, migration, and invasion through cell cycle pathways, such as PI3K, TGFβ or hippo signaling pathways, or on oncogenes such as Ras, AKT, mTOR, glycolysis. miR-132 could be potentially a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-132 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.
Collapse
Affiliation(s)
- Milad Rafat
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahta Moraghebi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Afsa
- Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. .,Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
15
|
Nano-peroxidase a Promising Anti-inflammatory and Antibacterial Agent Against Bacteria and Inflammation Related to Colorectal Cancer. J Gastrointest Cancer 2021; 53:415-419. [PMID: 33742371 DOI: 10.1007/s12029-021-00626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common causes of cancer death in the world. Although genes are considered the most importantcauses that contribute to CRC, the intestinal microorganisms are an important player. Recently, various studies ensured the role of microbial infection and the ensuing inflammation in colon cancer initiation and progression. This present study tries to introduce a cheap nano-peroxidase (an antioxidant enzyme) produced from natural sources as efficient and safe antibacterial and anti-inflammatory agent against bacteria and inflammation related to colorectal cancer. METHODS Silica nanoparticles were prepared from rice straw. Peroxidase extracted from the dry onion scales was then immobilized on the prepared nanosilica (nano-peroxidase). The antibacterial activity of the prepared nano-peroxidase was tested against the four horsemen bacteria in CRC, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, and Salmonella enterica. The in vitro anti-inflammatory activity of the prepared nano-peroxidase also tests through performing inhibition of albumin denaturation test. RESULTS The prepared nano-peroxidase showed high antibacterial activity against the tested bacteria in presence of very low concentration of H2O2. Immobilization increased the peroxidase stability and protected it from hydrolysis enzymes produced by the bacteria. The prepared nano-peroxidase interestingly showed significant higher anti-inflammatory activity than that of the standard (Aspirin). CONCLUSION Nano-peroxidase can be considered a promising safe anti-inflammatory and antibacterial agent against bacteria and inflammation related to colorectal cancer.
Collapse
|
16
|
Yang HC, Islam MM, Nguyen PAA, Wang CH, Poly TN, Huang CW, Li YCJ. Development of a Web-Based System for Exploring Cancer Risk With Long-term Use of Drugs: Logistic Regression Approach. JMIR Public Health Surveill 2021; 7:e21401. [PMID: 33587043 PMCID: PMC7920756 DOI: 10.2196/21401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Existing epidemiological evidence regarding the association between the long-term use of drugs and cancer risk remains controversial. Objective We aimed to have a comprehensive view of the cancer risk of the long-term use of drugs. Methods A nationwide population-based, nested, case-control study was conducted within the National Health Insurance Research Database sample cohort of 1999 to 2013 in Taiwan. We identified cases in adults aged 20 years and older who were receiving treatment for at least two months before the index date. We randomly selected control patients from the patients without a cancer diagnosis during the 15 years (1999-2013) of the study period. Case and control patients were matched 1:4 based on age, sex, and visit date. Conditional logistic regression was used to estimate the association between drug exposure and cancer risk by adjusting potential confounders such as drugs and comorbidities. Results There were 79,245 cancer cases and 316,980 matched controls included in this study. Of the 45,368 associations, there were 2419, 1302, 662, and 366 associations found statistically significant at a level of P<.05, P<.01, P<.001, and P<.0001, respectively. Benzodiazepine derivatives were associated with an increased risk of brain cancer (adjusted odds ratio [AOR] 1.379, 95% CI 1.138-1.670; P=.001). Statins were associated with a reduced risk of liver cancer (AOR 0.470, 95% CI 0.426-0.517; P<.0001) and gastric cancer (AOR 0.781, 95% CI 0.678-0.900; P<.001). Our web-based system, which collected comprehensive data of associations, contained 2 domains: (1) the drug and cancer association page and (2) the overview page. Conclusions Our web-based system provides an overview of comprehensive quantified data of drug-cancer associations. With all the quantified data visualized, the system is expected to facilitate further research on cancer risk and prevention, potentially serving as a stepping-stone to consulting and exploring associations between the long-term use of drugs and cancer risk.
Collapse
Affiliation(s)
- Hsuan-Chia Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Md Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Phung Anh Alex Nguyen
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Huan Wang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Huang
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Lee DY, Lee KP, Beak S, Park JS, Kim YJ, Kim KN, Kim SR, Yoon MS. Antibreast Cancer Activity of Aspirin-Conjugated Chalcone Polymeric Micelles. Macromol Res 2021. [DOI: 10.1007/s13233-021-9010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zhang S, Yang Y, Hua Y, Hu C, Zhong Y. NCTD elicits proapoptotic and antiglycolytic effects on colorectal cancer cells via modulation of Fam46c expression and inhibition of ERK1/2 signaling. Mol Med Rep 2020; 22:774-782. [PMID: 32468032 PMCID: PMC7339822 DOI: 10.3892/mmr.2020.11151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a digestive tract malignancy and the third leading cause of cancer‑related mortality worldwide. Norcantharidin (NCTD), the demethylated form of cantharidin, has been reported to possess anticancer properties. Family‑with‑sequence‑similarity‑46c (Fam46c), a non‑canonical poly(A) polymerase, has been reported to be critical in NCTD‑mediated effects in numerous types of cancer, including hepatoma. In the current study, it was found that Fam46c expression was reduced in colorectal cancer tissues and cells. Treatment with NCTD was observed to significantly enhance apoptosis and inhibit glycolysis in colorectal cancer cells. In addition, Fam46c and cleaved caspase 3 expression levels were found to be increased in response to NCTD treatment, in contrast to tumor‑specific pyruvate kinase M2 and phosphorylated ERK expression, which was reduced. Importantly, overexpression of Fam46c exerted similar effects as NCTD treatment on the apoptosis and glycolysis of colorectal cancer cells, whereas Fam46c knockdown strongly attenuated the effect of NCTD. Moreover, epidermal growth factor, which acts as an agonist of ERK1/2 signaling, weakened the effects of NCTD on colorectal cancer cells. Taken together, the results indicated that NCTD promotes apoptosis and suppresses glycolysis in colorectal cancer cells by possibly targeting Fam46c and inhibiting ERK1/2 signaling, hence suggesting that Fam46c may act as a tumor suppressor in colorectal cancer. Thus, the present study identified a novel therapeutic target of NCTD in the clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Yunwei Hua
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Chen Hu
- School of Life Sciences and Technology, Tongji University, Shanghai 200082, P.R. China
| | - Yi Zhong
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| |
Collapse
|
19
|
Luo SD, Chen WC, Wu CN, Yang YH, Li SH, Fang FM, Huang TL, Wang YM, Chiu TJ, Wu SC. Low-Dose Aspirin Use Significantly Improves the Survival of Late-stage NPC: A Propensity Score-Matched Cohort Study in Taiwan. Cancers (Basel) 2020; 12:cancers12061551. [PMID: 32545461 PMCID: PMC7352863 DOI: 10.3390/cancers12061551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Aspirin use has been associated with improved survival rates in various cancers. However, it remains unclear if aspirin confers a survival benefit on patients with nasopharyngeal carcinoma (NPC). The aim of this study was to assess the associations between aspirin use and survival in different stages of NPC. Methods: This is a 10-year retrospective cohort study of NPC patients. A total of 565 NPC patients were recruited after we performed a 1:4 propensity score match between aspirin users and non-users. Cox regression models with adjusted covariates were employed to evaluate factors that influence the survival rate of NPC patients. Results: The Kaplan-Meier analysis revealed that the overall survival (p < 0.0001) and disease-specific survival (p < 0.0001) rates of 180-day aspirin users increased. Increased survival rates were also observed in 180-day aspirin users with Stages III and IV, T, N1 and 2, and N3 categories. Cox regression models indicated that factors, including aspirin use (univariate: HR = 0.28, 95% CI = 0.14-0.55, p < 0.001; multivariate: HR = 0.23, 95% CI = 0.12-0.46, p < 0.001), were independent prognostic factors for survival. Conclusions: Aspirin use for more than 180 days is associated with an increased survival rate and is a positive independent prognostic factor in NPC.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.); (C.-N.W.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.); (C.-N.W.)
| | - Ching-Nung Wu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.); (C.-N.W.)
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-H.L.); (T.-L.H.)
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (F.-M.F.); (Y.-M.W.)
| | - Tai-Lin Huang
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-H.L.); (T.-L.H.)
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (F.-M.F.); (Y.-M.W.)
| | - Tai-Jan Chiu
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-H.L.); (T.-L.H.)
- Correspondence: (T.-J.C.); (S.-C.W.); Tel.: +886-7-317-123 (ext. 3267) (T.-J.C.); +886-7-731-7123 (ext. 2533) (S.-C.W.)
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: (T.-J.C.); (S.-C.W.); Tel.: +886-7-317-123 (ext. 3267) (T.-J.C.); +886-7-731-7123 (ext. 2533) (S.-C.W.)
| |
Collapse
|
20
|
Zhang X, Zhang X, Shen L, Song L, Wu J, Cao G, Chen X, Zhu B. Comprehensive analysis of differentially expressed lncRNAs as diagnostic and prognostic markers for colorectal cancer. Exp Ther Med 2019; 18:4481-4489. [PMID: 31772638 DOI: 10.3892/etm.2019.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/02/2019] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Recent studies had revealed the important roles of long non-coding RNAs (lncRNAs) in a variety of human cancers, including CRC. However, the molecular mechanisms associated with CRC remain largely undetermined. In the current study, the GSE21510 dataset was analyzed to identify differentially expressed mRNAs and lncRNAs in CRC samples. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway bioinformatics analysis. Furthermore, protein-protein interaction networks were constructed to reveal interactions among differentially expressed proteins. Kaplan-Meier analysis was subsequently performed to determine the association between key lncRNA expression and the overall survival of patients with CRC. A total of 107 upregulated lncRNAs and 43 downregulated lncRNAs were identified in CRC. A lncRNA mediated co-expression network was also constructed in CRC. Bioinformatics analysis indicated that lncRNAs were associated with a series of biological processes, including 'xenobiotic glucuronidation', 'rRNA processing', 'sister chromatid cohesion', 'cell proliferation', 'mitotic nuclear division' and 'cell cycle regulation'. Furthermore, a higher expression of small nucleolar RNA host gene 17, tetratricopeptide repeat domain 2B-antisense RNA (AS) 1, erythrocyte membrane protein band 4.1 like 4A-AS2, deleted in lymphocytic leukemia 2, and a lower expression of muscle blind like splicing regulator 1-AS1 and LOC389332 were associated with shorter overall survival time in CRC samples. The present study provides useful information that can be used in the identification of novel biomarkers for CRC.
Collapse
Affiliation(s)
- Xunlei Zhang
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Xingsong Zhang
- Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Lili Shen
- Department of Oncology, Haimen People's Hospital, Nantong, Jiangsu 226100, P.R. China
| | - Li Song
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Guangxin Cao
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Xin Chen
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Bin Zhu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
21
|
Lin Q, Ye X, Huang Z, Yang B, Fang X, Chen H, Kong J. Graphene Oxide-Based Suppression of Nonspecificity in Loop-Mediated Isothermal Amplification Enabling the Sensitive Detection of Cyclooxygenase-2 mRNA in Colorectal Cancer. Anal Chem 2019; 91:15694-15702. [PMID: 31725282 DOI: 10.1021/acs.analchem.9b03861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase-2 (COX2) mRNA represents a key biomarker for identifying subjects with colorectal cancer (CRC), while there is still no rapid and sensitive detection method for COX2 mRNA. Loop-mediated isothermal amplification (LAMP) is extensively developed for the amplification of nucleic acids; however, its application is frequently hindered by serious nonspecific amplification. Herein, this work reported a graphene oxide (GO)-based LAMP method to enable the one-step detection of COX2 mRNA in cancer cells and serum samples. We found that GO greatly enhanced the specificity of LAMP through decreasing nonspecific hybridization and the fluorescence background signal because of the simultaneous adsorption of single-stranded primers and DNA staining dyes on GO. The detection limit of developed GO-based LAMP was 2 orders of magnitude more sensitive compared to that of classical LAMP. Then a GO-based reverse transcription (RT)-LAMP strategy was further developed and applied to detect COX2 mRNA in CRC cancer cells and serum samples with high specificity. The GO-based LAMP platform with advantages of low cost, simplicity, high specificity, and sensitivity holds considerable potential for real-time fluorescence monitoring of nucleic acid amplification in a wide range of fields.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Xin Ye
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Zhipeng Huang
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Bin Yang
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Xueen Fang
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Hui Chen
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| | - Jilie Kong
- Department of Chemistry , Fudan University , Shanghai 200438 , P. R. China
| |
Collapse
|
22
|
Hybiak J, Broniarek I, Kiryczyński G, Los LD, Rosik J, Machaj F, Sławiński H, Jankowska K, Urasińska E. Aspirin and its pleiotropic application. Eur J Pharmacol 2019; 866:172762. [PMID: 31669590 DOI: 10.1016/j.ejphar.2019.172762] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Aspirin (acetylsalicylic acid), the oldest synthetic drug, was originally used as an anti-inflammatory medication. Being an irreversible inhibitor of COX (prostaglandin-endoperoxide synthase) enzymes that produce precursors for prostaglandins and thromboxanes, it has gradually found several other applications. Sometimes these applications are unrelated to its original purpose for example its use as an anticoagulant. Applications such as these have opened opportunities for new treatments. In this case, it has been tested in patients with cardiovascular disease to reduce the risk of myocardial infarct. Its function as an anticoagulant has also been explored in the prophylaxis and treatment of pre-eclampsia, where due to its anti-inflammatory properties, aspirin intake may be used to reduce the risk of colorectal cancer. It is important to always consider both the risks and benefits of aspirin's application. This is especially important for proposed use in the prevention and treatment of neurologic ailments like Alzheimer's disease, or in the prophylaxis of myocardial infarct. In such cases, the decision if aspirin should be applied, and at what dose may be guided by specific molecular markers. In this revived paper, the pleiotropic application of aspirin is summarized.
Collapse
Affiliation(s)
- Jolanta Hybiak
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| | - Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Poland
| | - Gerard Kiryczyński
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Laura D Los
- Faculty of Science, University of Manitoba, Winnipeg, Canada
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Hubert Sławiński
- Wellcome Centre for Human Genetics, University of Oxford, United Kingdom
| | - Kornelia Jankowska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
23
|
Gao CE, Zhang M, Song Q, Dong J. PD-1 inhibitors dependent CD8 + T cells inhibit mouse colon cancer cell metastasis. Onco Targets Ther 2019; 12:6961-6971. [PMID: 31695411 PMCID: PMC6717878 DOI: 10.2147/ott.s202941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Colon cancer is a common digestive tract malignancy which ranks as the third leading cause of cancer death worldwide. A current focus of anti-cancer research is harnessing the patient's own immune system for therapy. Programmed cell death protein 1 (PD-1), an immune suppressor, is upregulated in various activated immune cells, such as T cells, and in viral infections and tumors. Purpose The objective of this study was to investigate the function of PD-1 inhibitor on the metastasisi of mouse colon cancer cells. Patients and methods In the present study, we established an in situ colon cancer mouse model using the CT26 cell line. Hematoxylin-eosin (HE) staining was performed to detect colon cancer cell metastasis. The levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12) in serum and mesenteric lymph nodes (MLNs) were detected by Enzyme-linked immunosorbent assay (ELISA). CD44high CD62Llow memory T cells, CD4+ FoxP3+ regulatory T cells, and IFN-γ and TNF-α levels in MLNs and spleen were detected by flow cytometry (FCM). Results We found that anti-PD-1 therapy inhibited colon cancer cells metastasis to the small intestine, liver, and lung, and lengthened the survival time of mice. However, the depletion of CD8 suppressed the activity of anti-PD-1 antibodies. In response to anti-PD-1 immunotherapy, the levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12) in serum and mesenteric lymph nodes (MLNs) were significantly increased, while IL-6, IL-17, and transforming growth factor-β (TGF-β) were decreased. CD8 depletion had the opposite effect. In addition, anti-PD-1 treatment significantly increased CD44high CD62Llow memory T cells, decreased CD4+ FoxP3+ regulatory T cells, and increased IFN-γ and TNF-α levels in MLNs and spleen. Furthermore, anti-PD-1 treatment cannot exert these roles when CD8 is depleted. Conclusion These results suggest that PD-1 inhibitors rely on CD8+ T cells to exert anti-tumor immunity in colon cancer.
Collapse
Affiliation(s)
- Chang E Gao
- The First Affiliated Hospital of Kunming Medical University, Department of Medical Oncology, Kunming, Yunnan 650031, People's Republic of China.,Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Department of Medical Oncology, Kunming, Yunnan 650018, People's Republic of China
| | - Ming Zhang
- Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Cancer Research Institute, Kunming, Yunnan 650018, People's Republic of China
| | - Qian Song
- Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Department of Radiation Oncology, Kunming, Yunnan 650018, People's Republic of China
| | - Jian Dong
- Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Department of Medical Oncology, Kunming, Yunnan 650018, People's Republic of China
| |
Collapse
|
24
|
Lichtenberger LM, Vijayan KV. Are Platelets the Primary Target of Aspirin's Remarkable Anticancer Activity? Cancer Res 2019; 79:3820-3823. [PMID: 31300475 DOI: 10.1158/0008-5472.can-19-0762] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023]
Abstract
Aspirin, when administered at low doses, has emerged as a powerful anticancer drug due to both chemopreventive activity against many forms of cancer and its ability to block metastases when administered postdiagnosis. Platelets, which are often elevated in circulation during the latter stages of cancer, are known to promote epithelial-mesenchymal transition, cancer cell growth, survival in circulation, and angiogenesis at sites of metastases. Low-dose aspirin has been demonstrated to block this procarcinogenic action of platelets. In this article, we present evidence that aspirin's unique ability to irreversibly inhibit platelet cyclooxygenase-1 is a key mechanism by which aspirin exerts anticancer activity.
Collapse
Affiliation(s)
- Lenard M Lichtenberger
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - K Vinod Vijayan
- Department of Medicine, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
25
|
Mocellin S, Goodwin A, Pasquali S. Risk-reducing medications for primary breast cancer: a network meta-analysis. Cochrane Database Syst Rev 2019; 4:CD012191. [PMID: 31032883 PMCID: PMC6487387 DOI: 10.1002/14651858.cd012191.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the most frequently occurring malignancy and the second cause of death for cancer in women. Cancer prevention agents (CPAs) are a promising approach to reduce the burden of breast cancer. Currently, two main types of CPAs are available: selective estrogen receptor modulators (SERMs, such as tamoxifen and raloxifene) and aromatase inhibitors (AIs, such as exemestane and anastrozole). OBJECTIVES To assess the efficacy and acceptability of single CPAs for the prevention of primary breast cancer, in unaffected women, at an above-average risk of developing breast cancer.Using a network meta-analysis, to rank single CPAs, based on their efficacy and acceptability (an endpoint that is defined as the inverse of CPA-related toxicity). SEARCH METHODS We searched the Cochrane Breast Cancer Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP), and ClinicalTrials.gov on 17 August 2018. We handsearched reference lists to identify additional relevant studies. SELECTION CRITERIA We included randomized controlled trials (RCTs) that enrolled women without a personal history of breast cancer but with an above-average risk of developing a tumor. Women had to be treated with a CPA and followed up to record the occurrence of breast cancer and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and conducted risk of bias assessments of the included studies, and assessed the certainty of the evidence using GRADE. Outcome data included incidence of breast carcinoma (both invasive and in situ carcinoma) and adverse events (both overall and severe toxicity). We performed a conventional meta-analysis (for direct comparisons of a single CPA with placebo or a different CPA) and network meta-analysis (for indirect comparisons). MAIN RESULTS We included six studies enrolling 50,927 women randomized to receive one CPA (SERMs: tamoxifen or raloxifene, or AIs: exemestane or anastrozole) or placebo. Three studies compared tamoxifen and placebo, two studies compared AIs (exemestane or anastrozole) versus placebo, and one study compared tamoxifen versus raloxifene. The risk of bias was low for all RCTs.For the tamoxifen versus placebo comparison, tamoxifen likely resulted in a lower risk of developing breast cancer compared to placebo (risk ratio (RR) 0.68, 95% confidence interval (CI) 0.62 to 0.76; 3 studies, 22,832 women; moderate-certainty evidence). In terms of adverse events, tamoxifen likely increased the risk of severe toxicity compared to placebo (RR 1.28, 95% CI 1.12 to 1.47; 2 studies, 20,361 women; moderate-certainty evidence). In particular, women randomized to receive tamoxifen experienced a higher incidence of both endometrial carcinoma (RR 2.26, 95% CI 1.52 to 3.38; high-certainty evidence) and thromboembolism (RR 2.10, 95% CI 1.14 to 3.89; high-certainty evidence) compared to women who received placebo.For the AIs versus placebo comparison, AIs (exemestane or anastrozole) reduced the risk of breast cancer by 53% (RR 0.47, 95% CI 0.35 to 0.63; 2 studies, 8424 women; high-certainty evidence). In terms of adverse events, AIs increased the risk of severe toxicity by 18% (RR 1.18, 95% CI 1.09 to 1.28; 2 studies, 8352 women; high-certainty evidence). These differences were sustained especially by endocrine (e.g. hot flashes), gastrointestinal (e.g. diarrhea), and musculoskeletal (e.g. arthralgia) adverse events, while there were no differences in endometrial cancer or thromboembolism rates between AIs and placebo.For the tamoxifen versus raloxifene comparison, raloxifene probably performed worse than tamoxifen in terms of breast cancer incidence reduction (RR 1.25, 95% CI 1.09 to 1.43; 1 study, 19,490 women; moderate-certainty evidence), but its use was associated with lower toxicity rates (RR 0.87, 95% CI 0.80 to 0.95; 1 study, 19,490 women; moderate-certainty evidence), particularly relating to incidence of endometrial cancer and thromboembolism.An indirect comparison of treatment effects allowed us to compare the SERMs and AIs in this review. In terms of efficacy, AIs (exemestane or anastrozole) may have reduced breast cancer incidence slightly compared to tamoxifen (RR 0.67, 95% CI 0.46 to 0.98; 5 RCTs, 31,256 women); however, the certainty of evidence was low. A lack of model convergence did not allow us to analyze toxicity data. AUTHORS' CONCLUSIONS For women with an above-average risk of developing breast cancer, CPAs can reduce the incidence of this disease. AIs appear to be more effective than SERMs (tamoxifen) in reducing the risk of developing breast cancer. AIs are not associated with an increased risk of endometrial cancer and thromboembolic events. However, long-term data on toxicities from tamoxifen are available while the follow-up toxicity data on unaffected women taking AIs is relatively short. Additional data from direct comparisons are needed to fully address the issues of breast cancer prevention by risk-reducing medications, with special regards to acceptability (i.e. the benefit/harm ratio).
Collapse
Affiliation(s)
| | | | - Sandro Pasquali
- Fondazione IRCCS Istituto Nazionale dei TumoriSarcoma ServiceVia G. Venezian 1MilanoItaly20133
| |
Collapse
|
26
|
Tian Y, Xu Y, Wang H, Shu R, Sun L, Zeng Y, Gong F, Lei Y, Wang K, Luo H. Comprehensive analysis of microarray expression profiles of circRNAs and lncRNAs with associated co-expression networks in human colorectal cancer. Funct Integr Genomics 2019; 19:311-327. [PMID: 30446877 PMCID: PMC6394731 DOI: 10.1007/s10142-018-0641-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Abstract
Increasing data demonstrate that circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) play important roles in tumorigenesis. However, the mechanisms in colorectal cancer (CRC) remain unclear. Here, hundreds of significantly expressed circRNAs, and thousands of lncRNAs as well as mRNAs were identified. By qRT-PCR, one abnormal circRNA, lncRNA, and three mRNAs were verified in 24 pairs of tissues and blood samples, respectively. Then, by GO analysis, we found that the gene expression profile of linear counterparts of upregulated circRNAs in human CRC tissues preferred positive regulation of GTPase activity, cellular protein metabolic process, and protein binding, while that of downregulated circRNAs of CRC preferred positive regulation of cellular metabolic process, acetyl-CoA metabolic process, and protein kinase C activity. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that p53 signaling pathway was an important pathway in upregulated protein-coding genes, whereas cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) signaling pathway was the top enriched KEGG pathway for downregulated transcripts. Furthermore, lncRNA-mRNA co-expression analysis demonstrated that downregulated lncRNA uc001tma.3 was negatively with CDC45 and positively with ELOVL4, BVES, FLNA, and HSPB8, while upregulated lncRNA NR_110882 was positively with FZD2. In addition, lncRNA-transcription factor (TF) co-expression analysis showed that the most relevant TFs were forkhead box protein A1 (FOXA1), transcription initiation factor TFIID submint 7 (TAF7), and adenovirus early region 1A(E1A)-associated protein p300 (EP300). Our findings offer a fresh view on circRNAs and lncRNAs and provide the foundation for further study on the potential roles of circRNAs and lncRNAs in colorectal cancer.
Collapse
Affiliation(s)
- Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
| | - Huawei Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Liang Sun
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Yujian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
| | - Fangyou Gong
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Yi Lei
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032 China
- Kunming Engineering Technology Center of Digestive Disease, No. 295 Xichang Road, Kunming, 650032 China
| |
Collapse
|
27
|
Xie XN, Yu J, Zhang LH, Luo ZY, Ouyang DS, Zheng LJ, Wang CY, Yang L, Chen L, Tan ZR. Relationship between polymorphisms of the lipid metabolism-related gene PLA2G16 and risk of colorectal cancer in the Chinese population. Funct Integr Genomics 2018; 19:227-236. [PMID: 30343388 DOI: 10.1007/s10142-018-0642-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023]
Abstract
This study aimed to investigate the relationship between polymorphisms in the lipid metabolism-related gene PLA2G16 encoding Group XVI phospholipase A2 and the risk of colorectal cancer (CRC) in the Chinese population. A total of 185 patients with CRC and 313 healthy controls were enrolled. Thirteen single nucleotide polymorphisms (SNPs) of PLA2G16 were genotyped with SNPscan™. Linkage disequilibrium and haplotypes were analysed using Haploview software. Multivariate logistic regression was used to determine the association between the various genotypes and CRC risk. We identified five PLA2G16 SNPs (rs11600655, rs3809072, rs3809073, rs640908 and rs66475048) that were associated with CRC risk after adjusting for age, sex and body mass index. Two haplotypes (CTC and GGA) of rs11600655, rs3809073 and rs3809072, were relevant to CRC risk. The rs11600655 polymorphism was also associated with lymph node metastasis and CRC staging, while rs3809073 and rs3809072 may affect transcriptional regulation of PLA2G16 by altering transcription factor binding. These findings suggest that PLA2G16 polymorphisms-especially CTC and GGA haplotypes-increase CRC susceptibility. Importantly, we showed that the rs11600655 CC, rs640908 CT and rs66475048 GA genotypes are independent risk factors for CRC in the Chinese population.
Collapse
Affiliation(s)
- Xiao-Nv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Li-Hua Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Zhi-Ying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Ling-Jie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Chun-Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China
| | - Ling Chen
- Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China. .,Institute of Clinical pharmacology, Human Key Laboratory of Pharmacology, Central South University, Changsha, China.
| |
Collapse
|
28
|
Brenner H, Chen C. The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. Br J Cancer 2018; 119:785-792. [PMID: 30287914 PMCID: PMC6189126 DOI: 10.1038/s41416-018-0264-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is both one of the most common and one of the most preventable cancers globally, with powerful but strongly missed potential for primary, secondary and tertiary prevention. CRC incidence has traditionally been the highest in affluent Western countries, but it is now increasing rapidly with economic development in many other parts of the world. CRC shares several main risk factors, such as smoking, excessive alcohol consumption, physical inactivity and being overweight, with other common diseases; therefore, primary prevention efforts to reduce these risk factors are expected to have multiple beneficial effects that extend beyond CRC prevention, and should have high public health impact. A sizeable reduction in the incidence and mortality of CRC can also be achieved by offering effective screening tests, such as faecal immunochemical tests, flexible sigmoidoscopy and colonoscopy, in organised screening programmes which have been implemented in an increasing number of countries. Countries with early and high uptake rates of effective screening have exhibited major declines in CRC incidence and mortality, in contrast to most other countries. Finally, increasing evidence shows that the prognosis and quality of life of CRC patients can be substantially improved by tertiary prevention measures, such as the administration of low-dose aspirin and the promotion of physical activity.
Collapse
Affiliation(s)
- Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Chen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Lu S, Obianom ON, Ai Y. Novel hybrids derived from aspirin and chalcones potently suppress colorectal cancer in vitro and in vivo. MEDCHEMCOMM 2018; 9:1722-1732. [PMID: 30429977 DOI: 10.1039/c8md00284c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) remains the fourth leading cause of cancer deaths around the world despite the availability of many approved small molecules for treatment. The issues lie in the potency, selectivity and targeting of these compounds. Therefore, new strategies and targets are needed to optimize and develop novel treatments for CRC. Here, a group of novel hybrids derived from aspirin and chalcones were designed and synthesized based on recent reports of their individual benefits to CRC targeting and selectivity. The most active compound 7h inhibited proliferation of CRC cell lines with better potency compared to 5-fluorouracil, a currently used therapeutic agent for CRC. Importantly, 7h had 8-fold less inhibitory activity against non-cancer CCD841 cells. In addition, 7h inhibited CRC growth via the inhibition of the cell cycle in the G1 phase. Furthermore, 7h induced apoptosis by activating caspase 3 and PARP cleavage, as well as increasing ROS in CRC cells. Finally, 7h significantly retarded the CRC cell growth in a mouse xenograft model. These findings suggest that 7h may have potential to treat CRC.
Collapse
Affiliation(s)
- Shan Lu
- College of Pharmacy , Hubei University of Chinese Medicine , Hubei 430065 , PR China .
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD 21201 , USA .
| | - Yong Ai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD 21201 , USA .
| |
Collapse
|
30
|
Sun Y, Dai H, Chen S, Zhang Y, Wu T, Cao X, Zhao G, Xu A, Wang J, Wu L. Disruption of Chromosomal Architecture of cox2 Locus Sensitizes Lung Cancer Cells to Radiotherapy. Mol Ther 2018; 26:2456-2465. [PMID: 30131302 PMCID: PMC6171098 DOI: 10.1016/j.ymthe.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 11/15/2022] Open
Abstract
Despite treatment of lung cancer with radiotherapy and chemotherapy, the survival rate of lung cancer patients remains poor. Previous studies demonstrated the importance of upregulation of inflammatory factors, such as cyclooxygenase 2 (cox2), in tumor tolerance. In the present study, we investigated the role of cox2 in radiosensitivity of lung cancer. Our results showed that the combination treatment of radiation with aspirin, an anti-inflammatory drug, induced a synergistic reduction of cell survival in A549 and H1299 lung cancer cells. In comparison with normal human lung fibroblasts (NHLFs), the cell viability was significantly decreased and the level of apoptosis was remarkably enhanced in A549 cells. Mechanistic studies revealed that the reduction of cox2 by aspirin in A549 and H1299 was caused by disruption of the chromosomal architecture of the cox2 locus. Moreover, the disruption of chromatin looping was mediated by the inhibition of nuclear translocation of p65 and decreased enrichment of p65 at cox2-regulatory elements. Importantly, disorganization of the chromosomal architecture of cox2 triggered A549 cells sensitive to γ-radiation by the induction of apoptosis. In conclusion, we present evidence of an effective therapeutic treatment targeting the epigenetic regulation of lung cancer and a potential strategy to overcome radiation resistance in cancer cells.
Collapse
Affiliation(s)
- Yuxiang Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Hui Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| | - Yajun Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Tao Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Xianbin Cao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - An Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| |
Collapse
|
31
|
Novel cinnamaldehyde-based aspirin derivatives for the treatment of colorectal cancer. Bioorg Med Chem Lett 2018; 28:2869-2874. [PMID: 30037494 DOI: 10.1016/j.bmcl.2018.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of mortality worldwide. Current treatments of CRC involve anti-cancer agents with relatively good efficacy but unselectively target both cancer and non-cancer cells. Thus, there is a need to discover and develop novel CRC therapeutics that have potent anti-cancer effects, but show reduced off-target cell effects. Here, a novel series of cinnamaldehyde-based aspirin derivatives were designed and synthesized. Biological evaluation indicated that the most active compound 1f exhibited more than 10-fold increase in the anti-proliferation efficacy in HCT-8 cells compared to the parent compounds. Its effects were similarly reproduced in another CRC cell line, DLD-1, but with 7- to 11-fold less inhibitory activity in non-tumorigenic colon cells. Flow cytometry analysis showed that 1f induced cell cycle arrest and apoptosis, which was further validated with immunoblot analysis of the relative protein levels of cleaved caspase 3 and PARP as well as the ROS production in CRC cells. More so, 1f significantly inhibited the growth of implanted CRC in vivo in mouse xenograft model. Taken together, our results show that cinnamaldehyde-based aspirin derivatives such as 1f show promise as novel anti-CRC agent for further pharmaceutical development.
Collapse
|
32
|
Kagbo-Kue S, Ajose T, Bakinde N. Aspirin inhibited the metastasis of colon cancer cells by inhibiting the expression of toll-like receptor 4. Cell Biosci 2018; 8:36. [PMID: 29942487 PMCID: PMC5963149 DOI: 10.1186/s13578-018-0234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Suaka Kagbo-Kue
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, USA
| | - Taiwo Ajose
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, USA
| | - Nicolas Bakinde
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, USA
| |
Collapse
|
33
|
Kanikarla-Marie P, Lam M, Sorokin AV, Overman MJ, Kopetz S, Menter DG. Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy. Front Oncol 2018; 8:107. [PMID: 29732316 PMCID: PMC5919962 DOI: 10.3389/fonc.2018.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
The role of platelets in cancer progression has been well recognized in the field of cancer biology. Emerging studies are elaborating further the additional roles and added extent that platelets play in promoting tumorigenesis. Platelets release factors that support tumor growth and also form heterotypic aggregates with tumor cells, which can provide an immune-evasive advantage. Their most critical role may be the inhibition of immune cell function that can negatively impact the body’s ability in preventing tumor establishment and growth. This review summarizes the importance of platelets in tumor progression, therapeutic response, survival, and finally the notion of immunotherapy modulation being likely to benefit from the inclusion of platelet inhibitors.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V Sorokin
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
34
|
Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018. [PMID: 29519806 DOI: 10.1182/blood-2017-05-743187] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets have long been recognized as key players in hemostasis and thrombosis; however, growing evidence suggests that they are also significantly involved in cancer, the second leading cause of mortality worldwide. Preclinical and clinical studies showed that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between platelets and cancer cells. For example, cancer changes platelet behavior by directly inducing tumor-platelet aggregates, triggering platelet granule and extracellular vesicle release, altering platelet phenotype and platelet RNA profiles, and enhancing thrombopoiesis. Reciprocally, platelets reinforce tumor growth with proliferation signals, antiapoptotic effect, and angiogenic factors. Platelets also activate tumor invasion and sustain metastasis via inducing an invasive epithelial-mesenchymal transition phenotype of tumor cells, promoting tumor survival in circulation, tumor arrest at the endothelium, and extravasation. Furthermore, platelets assist tumors in evading immune destruction. Hence, cancer cells and platelets maintain a complex, bidirectional communication. Recently, aspirin (acetylsalicylic acid) has been recognized as a promising cancer-preventive agent. It is recommended at daily low dose by the US Preventive Services Task Force for primary prevention of colorectal cancer. The exact mechanisms of action of aspirin in chemoprevention are not very clear, but evidence has emerged that suggests a platelet-mediated effect. In this article, we will introduce how cancer changes platelets to be more cancer-friendly and highlight advances in the modes of action for aspirin in cancer prevention. We also discuss the opportunities, challenges, and opposing viewpoints on applying aspirin and other antiplatelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; and
- Department of Medicine and
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Liu XF, Hao JL, Xie T, Pant OP, Lu CB, Lu CW, Zhou DD. The BRAF activated non-coding RNA: A pivotal long non-coding RNA in human malignancies. Cell Prolif 2018; 51:e12449. [PMID: 29484737 DOI: 10.1111/cpr.12449] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) participate in the complex network of cancer and play an important role in tumourigenesis and progression. BRAF activated non-coding RNA (BANCR), a 4-exon transcript of 693-bp, was first discovered as an oncogenic long non-coding RNA in BRAFV600E melanomas cells in 2012 and was related to melanoma cell migration. Besides melanoma, increasing evidence has explored the potential role of BANCR in the development and progression of multiple other human malignancies, such as retinoblastoma, lung cancer, gastric cancer etc. since its discovery. The expression pattern of BANCR varies in different types of cancers, either as a tumour suppressor or as an accelerator. Functional BANCR may serve as a promising biomarker for cancer diagnosis as well as prognosis evaluation. BANCR-targeted intervention may also become a valuable novel therapeutic tool against human malignancies. This review summarized the advanced research progresses concerning the expression and role of BANCR in different human malignancies.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of. Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
36
|
Fortin O, Aguilar-Uscanga B, Vu KD, Salmieri S, Lacroix M. Cancer Chemopreventive, Antiproliferative, and Superoxide Anion Scavenging Properties ofKluyveromyces marxianusandSaccharomyces cerevisiae var. boulardiiCell Wall Components. Nutr Cancer 2017; 70:83-96. [DOI: 10.1080/01635581.2018.1380204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Blanca Aguilar-Uscanga
- Department of Pharmacobiology, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh Dang Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| |
Collapse
|
37
|
Dachineni R, Kumar DR, Callegari E, Kesharwani SS, Sankaranarayanan R, Seefeldt T, Tummala H, Bhat GJ. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer. Int J Oncol 2017; 51:1661-1673. [PMID: 29075787 PMCID: PMC5673027 DOI: 10.3892/ijo.2017.4167] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and treatment.
Collapse
Affiliation(s)
- Rakesh Dachineni
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| | - D Ramesh Kumar
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| | - Eduardo Callegari
- SD-BRIN Proteomic Facility, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | - Siddharth S Kesharwani
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| | - Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| | - Teresa Seefeldt
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| | - G Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA
| |
Collapse
|
38
|
Ma X, Zhang H, Xue X, Shah YM. Hypoxia-inducible factor 2α (HIF-2α) promotes colon cancer growth by potentiating Yes-associated protein 1 (YAP1) activity. J Biol Chem 2017; 292:17046-17056. [PMID: 28848049 PMCID: PMC5641885 DOI: 10.1074/jbc.m117.805655] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Indexed: 01/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third-leading cause of cancer mortality in the United States and other industrialized countries. A hypoxic microenvironment is a hallmark for solid tumors. The hypoxia-induced signal transduction is transcriptionally mediated by hypoxia-inducible factor (HIF). Three major HIF isoforms, HIF-1α, HIF-2α, and HIF-3α, are present in the intestine. Our previous work demonstrates that HIF-2α is essential for CRC growth and progression. However, the mechanisms mediating cell proliferation after hypoxia or HIF-2α activation in CRC are unclear. Data mining of RNA-Seq experiments with mouse models of intestinal HIF-2α or Yes-associated protein 1 (YAP1) overexpression indicates a significant overlap of genes in these conditions. YAP1 is a transcriptional co-activator in the Hippo signaling pathway, and YAP1-induced transcriptional responses are essential in cancer cell proliferation. Here, we report that HIF-2α robustly increases YAP1 expression and activity in CRC-derived cell lines and in mouse models. The potentiation of YAP1 activity by HIF-2α was not via canonical signaling mechanisms such as Src (non-receptor tyrosine kinase), PI3K, ERK, or MAPK pathways. Moreover, we detected no direct interaction of HIF-2α with YAP1. Of note, YAP1 activation was critical for cancer cell growth under hypoxia. Our findings indicate that HIF-2α increases cancer cell growth by up-regulating YAP1 activity, suggesting that this pathway might be targeted in potential anti-cancer approaches for treating CRC patients.
Collapse
Affiliation(s)
- Xiaoya Ma
- From the Departments of Molecular and Integrative Physiology and
| | - Huabing Zhang
- From the Departments of Molecular and Integrative Physiology and
| | - Xiang Xue
- From the Departments of Molecular and Integrative Physiology and
| | - Yatrik M Shah
- From the Departments of Molecular and Integrative Physiology and
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
39
|
Pretorius E, Mbotwe S, Kell DB. Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of type 2 diabetics with cardiovascular co-morbidities. Sci Rep 2017; 7:9680. [PMID: 28851981 PMCID: PMC5574907 DOI: 10.1038/s41598-017-09860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) has many cardiovascular complications, including a thrombotic propensity. Many such chronic, inflammatory diseases are accompanied (and may be exacerbated, and possibly even largely caused) by amyloid fibril formation. Recognising that there are few strong genetic associations underpinning T2D, but that amyloidogenesis of amylin is closely involved, we have been seeking to understand what might trigger the disease. Serum levels of bacterial lipopolysaccharide are raised in T2D, and we recently showed that fibrin(ogen) polymerisation during blood clotting can be affected strongly by LPS. The selectivity was indicated by the regularisation of clotting by lipopolysaccharide-binding protein (LBP). Since coagulopathies are a hallmark of T2D, we wondered whether they might too be caused by LPS (and reversed by LBP). We show here, using SEM and confocal microscopy, that platelet-poor-plasma from subjects with T2D had a much greater propensity for hypercoagulability and for amyloidogenesis, and that these could both be reversed by LBP. These data imply that coagulopathies are an important feature of T2D, and may be driven by ‘hidden’ LPS. Given the prevalence of amyloid formation in the sequelae of diabetes, this opens up novel strategies for both the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 MATIELAND, 7602, Stellenbosch, South Africa.
| | - Sthembile Mbotwe
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, MANCHESTER M1 7DN, Lancs, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, MANCHESTER M1 7DN, Lancs, UK. .,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, 131 Princess St, MANCHESTER M1 7DN, Lancs, UK.
| |
Collapse
|
40
|
Kanikarla-Marie P, Lam M, Menter DG, Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev 2017; 36:235-248. [PMID: 28667367 DOI: 10.1007/s10555-017-9681-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Sun C, Wang FJ, Zhang HG, Xu XZ, Jia RC, Yao L, Qiao PF. miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/Smad4 pathway. World J Gastroenterol 2017; 23:1816-1827. [PMID: 28348487 PMCID: PMC5352922 DOI: 10.3748/wjg.v23.i10.1816] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.
METHODS miR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.
RESULTS Expression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.
CONCLUSION miR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.
Collapse
|
42
|
Ahmetaj-Shala B, Tesfai A, Constantinou C, Leszczynski R, Chan MV, Gashaw H, Galaris G, Mazi S, Warner TD, Kirkby NS, Mitchell JA. Pharmacological assessment of ibuprofen arginate on platelet aggregation and colon cancer cell killing. Biochem Biophys Res Commun 2017; 484:762-766. [PMID: 28153724 DOI: 10.1016/j.bbrc.2017.01.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 12/09/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, are amongst the most commonly used medications and produce their anti-inflammatory and analgesic benefits by blocking cyclooxygenase (COX)-2. These drugs also have the potential to prevent and treat cancer and some members of the class including ibuprofen can produce anti-platelet effects. Despite their utility, all NSAIDs are associated with increased risk of cardiovascular side effects which our recent work suggests could be mediated by increased levels of the endogenous NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) leading to reduced endothelial NOS activity and associated endothelial cell dysfunction. ADMA is a cardiotoxic hormone and biomarker of cardiovascular risk whose effects can be prevented by l-arginine. The ibuprofen salt, ibuprofen arginate (Spididol®) was created to increase drug solubility but we have previously established that it not only effectively blocks COX-2 but also provides an arginine source able to reverse the effects of ADMA in vitro and in vivo. Here we have gone on to explore whether the formulation of ibuprofen with arginine influences the potency and efficacy of the parent molecule using a range of simple in vitro assays designed to test the effects of NSAIDs on (i) platelet aggregation and (iii) colon cancer cell killing. Our findings demonstrate that ibuprofen arginate retains these key functional effects of NSAIDs with similar or increased potency compared to ibuprofen sodium, further illustrating the potential of ibuprofen arginate as an efficacious drug with the possibility of improved cardiovascular safety.
Collapse
Affiliation(s)
- B Ahmetaj-Shala
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - A Tesfai
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - C Constantinou
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - R Leszczynski
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - M V Chan
- Translational Medicine & Therapeutics, Queen Mary University of London, London, United Kingdom
| | - H Gashaw
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - G Galaris
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - S Mazi
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - T D Warner
- Translational Medicine & Therapeutics, Queen Mary University of London, London, United Kingdom
| | - N S Kirkby
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - J A Mitchell
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
43
|
Lawrence JR, Baxter GJ, Paterson JR. Aspirin for cancer is no mere antiplatelet prototype. There is potential in its ancient roots. Med Hypotheses 2016; 94:74-6. [PMID: 27515206 DOI: 10.1016/j.mehy.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Aspirin (ASA), increasingly accepted as predominantly a cyclooxygenase (COX)-1 inhibitor, is a prodrug for salicylic acid (SA) which has no such activity. SA is widespread in nature, vital in plants, and present in drug free serum from animals and man. Evolutionary conserved SA receptors are found in human tissues. Very low doses of ASA will, on repeat dosing, produce near maximal platelet COX-1 inhibition. Evidence for cancer prophylaxis is based on ASA doses of at least 75mg/day. Pleiotropic mechanisms underlie low dose ASA's undoubted efficacy in preventive medicine but the key barrier to its more widespread use is gastrointestinal toxicity. ASA/SA combination formulations may improve the current risk/benefit ratio of chemo-prophylactic preparations. There is well established methodology for, and should be few regulatory barriers to, their evaluation.
Collapse
Affiliation(s)
- James R Lawrence
- From the Research and Development Support Unit, Dumfries and Galloway Royal Infirmary, Bankend Road, Dumfries DG1 4AP, Scotland, United Kingdom.
| | - Gwendoline J Baxter
- From the Research and Development Support Unit, Dumfries and Galloway Royal Infirmary, Bankend Road, Dumfries DG1 4AP, Scotland, United Kingdom
| | - John R Paterson
- From the Research and Development Support Unit, Dumfries and Galloway Royal Infirmary, Bankend Road, Dumfries DG1 4AP, Scotland, United Kingdom
| |
Collapse
|
44
|
Moyad MA. Preventing aggressive prostate cancer with proven cardiovascular disease preventive methods. Asian J Androl 2016; 17:874-7; discussion 876. [PMID: 26112486 PMCID: PMC4814969 DOI: 10.4103/1008-682x.156854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) has been the number one cause of death in the U.S. for 114 of the last 115 years. Risk factors for prostate cancer have primarily mirrored risk proven risk factors for CVD, especially aggressive disease. Obesity, dyslipidemia, glucose intolerance, metabolic syndrome, unhealthy dietary habits or caloric excess, lack of physical activity, and inflammation are just some of these shared risk factors. The evidence also suggests proven CVD preventive measures are identical to prostate cancer preventive measures, especially in regard to aggressive disease. Thus, apart from lifestyle measures that can encourage optimal heart and prostate health there are potentially several dietary supplements that need to be avoided in healthy men because they may also increase the risk of prostate cancer. However, there are also several low-cost, generic, safe in the appropriate individuals, and naturally derived agents that could reduce prostate cancer risk, and these can be discussed and remembered utilizing the acronym S.A.M. (statins, aspirin, and/or metformin).
Collapse
Affiliation(s)
- Mark A Moyad
- Department of Urology, University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Mocellin S, Goodwin A, Pasquali S. Risk-reducing medication for primary breast cancer: a network meta-analysis. Hippokratia 2016. [DOI: 10.1002/14651858.cd012191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simone Mocellin
- University of Padova; Dept. Surgery Oncology and Gastroenterology; Via Giustiniani 2 Padova Veneto Italy 35128
- IOV-IRCCS; Istituto Oncologico Veneto; Padova Italy 35100
| | - Annabel Goodwin
- The University of Sydney, Concord Repatriation General Hospital; Concord Clinical School; Concord NSW Australia 2137
- Concord Repatriation General Hospital; Medical Oncology Department; Concord Australia
- Sydney Local Health District and South Western Sydney Local Health District; Cancer Genetics Department; Sydney Australia
| | - Sandro Pasquali
- Veneto Institute of Oncology - IRCCS; Surgical Oncology Unit; Via Gattamelata 64 Padova Italy 35128
| |
Collapse
|
46
|
Yang P, Xu ZP, Chen T, He ZY. Long noncoding RNA expression profile analysis of colorectal cancer and metastatic lymph node based on microarray data. Onco Targets Ther 2016; 9:2465-78. [PMID: 27217770 PMCID: PMC4853163 DOI: 10.2147/ott.s102348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as an important part of biological progress in cancers, yet the aberrant lncRNAs implicated in colorectal cancer (CRC) with lymph node metastasis remain unknown. In this study, a total of 390 lncRNA transcripts and 508 mRNA transcripts were dysregulated in tumor tissues compared with paired metastatic lymph nodes. Functional prediction showed that lots of lncRNAs might be involved in biological pathways related to CRC metastasis by cis-regulation and trans-regulation of coexpressed genes. As a representative, ENST00000430471 was associated with cell proliferation and invasion of CRC cells. These results provided support for further investigations of the metastatic pathogenesis of CRC.
Collapse
Affiliation(s)
- Peng Yang
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zi-Peng Xu
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tao Chen
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhen-Yu He
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
47
|
Guo Y, Liu Y, Zhang C, Su ZY, Li W, Huang MT, Kong AN. The epigenetic effects of aspirin: the modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane- and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 2016; 37:616-624. [PMID: 27207670 DOI: 10.1093/carcin/bgw042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Chronic inflammation appears to enhance the risk of CRC. Emerging evidence has suggested that epigenetic mechanisms play an important role in CRC. Aspirin [acetylsalicylic acid (ASA)] has been shown to prevent CRC; however, the epigenetic mechanisms of its action remain unknown. This study investigated the protective role of ASA in azoxymethane (AOM)-initiated and dextran sulfate sodium (DSS)-promoted colitis-associated colon cancer (CAC) and examined the epigenetic effects, particularly on histone 3 lysine 27 acetylation (H3K27ac), underlying the preventive effect of ASA. CF-1 mice were fed with AIN-93M diet with or without 0.02% ASA from 1 week prior to AOM initiation until the mice were killed 20 weeks after AOM injection. Our results showed that AOM/DSS + ASA significantly suppressed inflammatory colitis symptoms and tumor multiplicity. AOM/DSS + ASA reduced AOM/DSS-induced protein expression and the activity of histone deacetylases (HDACs) and globally restored H3K27ac. Furthermore, AOM/DSS + ASA inhibited AOM/DSS-induced enrichment of H3K27ac in the promoters of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) that corresponded to the dramatic suppression of the messenger RNA (mRNA) and protein levels. Surprisingly, no significant changes in the H3K27ac abundance in the prostaglandin-endoperoxide synthase 2 (Cox-2) promoters or in the Cox-2 mRNA and protein expression were observed. Collectively, our results suggest that a potential novel epigenetic mechanism underlies the chemopreventive effects of ASA, and this mechanism attenuates CAC in AOM/DSS-induced CF-1 mice via the inhibition of HDACs and the modification of H3K27ac marks that suppress iNOS, TNF-α and IL-6.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences.,Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yue Liu
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chengyue Zhang
- Graduate Program in Pharmaceutical Sciences.,Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli City, Taoyuan 32023, Taiwan and
| | - Wenji Li
- Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mou-Tuan Huang
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
48
|
Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK. Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. J Med Chem 2016; 59:1946-59. [PMID: 26750401 DOI: 10.1021/acs.jmedchem.5b01503] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and anticancer evaluation of novel selenium-nonsteroidal anti-inflammatory drug (Se-NSAID) hybrid molecules are reported. The Se-aspirin analogue 8 was identified as the most effective agent in reducing the viability of different cancer cell lines, particularly colorectal cancer (CRC) cells, was more selective toward cancer cells than normal cells, and was >10 times more potent than 5-FU, the current therapy for CRC. Compound 8 inhibits CRC growth via the inhibition of the cell cycle in G1 and G2/M phases and reduces the cell cycle markers like cyclin E1 and B1 in a dose dependent manner; the inhibition of the cell cycle may be dependent on the ability of 8 to induce p21 expression. Furthermore, 8 induces apoptosis by activating caspase 3/7 and PARP cleavage, and its longer exposure causes increase in intracellular ROS levels in CRC cells. Taken together, 8 has the potential to be developed further as a chemotherapeutic agent for CRC.
Collapse
Affiliation(s)
- Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra , Irunlarrea 1, E-31008 Pamplona, Spain
| | - Deepkamal N Karelia
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Manoj K Pandey
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Julian E Spallholz
- Department of Nutrition, Texas Tech University , Lubbock, Texas 79430, United States
| | - Shantu Amin
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
49
|
Heart Healthy = Prostate Healthy and S.A.M. are the Ideal “Natural” Recommendations for Prostate Cancer. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells. Amino Acids 2015; 48:1003-1012. [PMID: 26704566 PMCID: PMC4796368 DOI: 10.1007/s00726-015-2143-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
Aspirin is a well-known analgesic, anti-inflammatory and antipyretic drug and is recognised as a chemopreventative agent in cardiovascular disease and, more recently, in colorectal cancer. Although several studies indicate that aspirin is capable of reducing the risk of developing cancers, there is a lack of convincing evidence that aspirin can prevent prostate cancer in man. In this study, aspirin was shown to be an effective inhibitor of the growth of human prostate cancer cells. In order to investigate the link between polyamine catabolism and the effects of aspirin we used a “Tet off” system that induced the activity of spermidine/spermine N1-acetyltransferase (SSAT) in human prostate cancer cells (LNCap). Treatment with aspirin was found to decrease induced SSAT activity in these cells. A negative correlation was observed between increased polyamine catabolism via increased SSAT activity and the sensitivity to aspirin. In the presence of increased SSAT activity high amounts of N1-acetylspermidine and putrescine were observed. These cells were also found to grow more slowly than the non-induced cells. The results indicate that SSAT and its related polyamine metabolism may play a key role in sensitivity of cancer cells to aspirin and possibly other NSAIDs and this may have implications for the development of novel chemopreventative agents.
Collapse
|