1
|
Zhu T, Li Y, Wang Y, Li D. The Application of Dendritic Cells Vaccines in Tumor Therapy and Their Combination with Biomimetic Nanoparticles. Vaccines (Basel) 2025; 13:337. [PMID: 40333202 PMCID: PMC12031636 DOI: 10.3390/vaccines13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
Dendritic cells (DCs) act as a bridge between innate and adaptive immunity by presenting antigens to effector immune cells and have shown broad application potential in tumor immunotherapy. However, the clinical translation of DC vaccines encounters significant challenges, such as the immunosuppressive tumor microenvironment (TME) and the sub-optimal DC function and vaccine efficacy in vivo. In this review, our investigation has uncovered the latest developments in DC vaccines and their potential in cancer immunotherapy, with a special emphasis on the integration of nanotechnology. Several types of nanomaterials, including protein cage nanoparticles (NPs), biomimetic NPs, and targeted multifunctional NPs, have been developed to enhance the antigen presentation ability of DCs and their stimulatory effects on T cells. In addition, we have also summarized the synergistic anti-cancer effects of DC vaccines with immune checkpoint inhibitors, chemotherapy, and radiotherapy. In addition, recent advances in nanotechnology have made it possible to develop novel biomarkers that can enhance the antigen presentation capacity of DCs and stimulate T cells. These biomarkers not only improve the accuracy and precision of DC vaccine design but also provide new insights into understanding the mechanisms of the DC-mediated immune response. Despite challenges pertaining to technical complexities and individual adaptation in the design and production of DC vaccines, personalized immunotherapy based on DCs is expected to become an important part of cancer treatment with rapid developments in biotechnology and immunology. This review provides new perspectives and potential solutions for the optimal design and application of DC vaccines in cancer therapy.
Collapse
Affiliation(s)
- Tong Zhu
- Panjin Central Hospital, Panjin 124010, China;
| | - Yuexin Li
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150081, China;
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Danyang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
2
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
3
|
Balar PC, Apostolopoulos V, Chavda VP. A new era of immune therapeutics for pancreatic cancer: Monoclonal antibodies paving the way. Eur J Pharmacol 2024; 969:176451. [PMID: 38408598 DOI: 10.1016/j.ejphar.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.
Collapse
Affiliation(s)
- Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Werribee Campus, Melbourne, VIC, 3030, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| |
Collapse
|
4
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
5
|
Li P, Jia L, Bian X, Tan S. Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities. Curr Treat Options Oncol 2023; 24:1703-1719. [PMID: 37962824 DOI: 10.1007/s11864-023-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OPINION STATEMENT The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs' function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.
Collapse
Affiliation(s)
- Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
6
|
Sun T, Sun B, Cao Y, Liu J, Chen J, Liang B, Zheng C, Kan X. Synergistic effect of OK-432 in combination with an anti-PD-1 antibody for residual tumors after radiofrequency ablation of hepatocellular carcinoma. Biomed Pharmacother 2023; 166:115351. [PMID: 37625323 DOI: 10.1016/j.biopha.2023.115351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND AND AIMS Radiofrequency ablation (RFA) often results in incomplete ablation for medium-to-large and irregular tumors. To solve this clinical problem, we proposed a new treatment strategy of OK-432 in combination with an anti-programmed cell death protein 1 (αPD-1) antibody for residual tumors after incomplete RFA (iRFA) of hepatocellular carcinoma (HCC). APPROACH AND RESULTS The effect of OK-432 on immature dendritic cells (iDCs) was evaluated in vitro. A CCK-8 kit and ELISPOT were used to assess the killing effect of OK-432-induced CD8+ T cells in combination with an αPD-1 antibody on Hepa1-6 cells. We found that OK-432 significantly increased the maturation level of DCs, and OK-432-induced CD8+ T cells in combination with αPD-1 antibody significantly enhanced the function of CD8+ T cells. In the in vivo experiment, HCC model mice were treated with (1) pseudo iRFA + phosphate-buffered saline (PBS); (2) iRFA + PBS; (3) iRFA + OK-432; (4) iRFA + αPD-1; or (5) iRFA + OK-432 + αPD-1. We found that the combined therapy of OK-432 with αPD-1 antibody significantly increased the infiltration and function of CD8+ T cells and significantly decreased the number of FoxP3+ regulatory T cells in residual tumors after iRFA of HCC. Moreover, the smallest tumor volumes and the longest survival were observed in the triple combination treatment (iRFA+OK-432 +αPD-1 antibody) group compared with the other four groups. CONCLUSIONS The combined therapy of OK-432 with αPD-1 antibody induced a strong antitumor immune response, which significantly inhibited the residual tumors after iRFA of HCC. This concept may provide a new treatment strategy to increase the curative efficacy of RFA for medium-to-large and irregular HCCs. AVAILABILITY OF DATA AND MATERIAL The data of this study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiayun Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Juan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
7
|
Nagai H, Karube R. WT1 Dendritic Cell Vaccine Therapy Improves Immune Profile and Prolongs Progression-Free Survival in End-Stage Lung Cancer. Cureus 2023; 15:e47320. [PMID: 38022278 PMCID: PMC10656931 DOI: 10.7759/cureus.47320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
WT1-pulsed dendritic cell (WT1-DC) therapy was performed for end-stage squamous cell lung cancer that rapidly worsened soon after completion of carboplatin and paclitaxel. A rapid improvement in immune profile was observed with the initiation of WT1-DC. Docetaxel and ramucirumab were initiated as second-line agents during WT1-DC. The improvement of the immune profile status continued, and at the same time, the cancer showed a predominant shrinkage. Progression-free survival was over 577 days, and the patient was able to lead a normal daily life with a performance status of 1. These findings suggest that WT1-DC improves the immune profile, and this may contribute to the long-lasting and sustained effect of chemotherapy.
Collapse
Affiliation(s)
- Hisashi Nagai
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
- Graduate School of Human and Environmental Studies, Tokai University, Tokyo, JPN
| | | |
Collapse
|
8
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
9
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
10
|
Zhang X, Xu Z, Dai X, Zhang X, Wang X. Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Front Immunol 2023; 14:1104860. [PMID: 36761724 PMCID: PMC9905145 DOI: 10.3389/fimmu.2023.1104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The mutation of the crucial genes such as tumor suppressors or oncogenes plays an important role in the initiation and development of tumors. The non-synonymous mutations in the tumor cell genome will produce non-autologous proteins (neoantigen) to activate the immune system by activating CD4+ and CD8+ T cells. Neoantigen-based peptide vaccines have exhibited exciting therapeutic effects in treating various cancers alone or in combination with other therapeutic strategies. Furthermore, antigen-loaded DC vaccines are more powerful in inducing stronger immune responses than vaccines generated by antigens and adjuvants. Therefore, neoantigen-based dendritic cell (DC) vaccines could achieve promising effects in combating some malignant tumors. In this review, we summarized and discussed the recent research progresses of the neoantigen, neoantigen-based vaccines, and DC-based vaccine in pancreatic cancers (PCs). The combination of the neoantigen and DC-based vaccine in PC was also highlighted. Therefore, our work will provide more detailed evidence and novel opinions to promote the development of a personalized neoantigen-based DC vaccine for PC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Zheng Xu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,*Correspondence: Xueju Wang,
| |
Collapse
|
11
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
12
|
Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 2020; 19:32. [PMID: 32061257 PMCID: PMC7023714 DOI: 10.1186/s12943-020-01151-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of haematological malignancies as well as solid tumours have been substantially improved over the past decades, and impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive microenvironment for enhanced therapy.
Collapse
Affiliation(s)
- Jia-qiao Fan
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Fei Wang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hai-Long Chen
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jugal K. Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| |
Collapse
|
13
|
Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcão A, Cruz MT, Neves BM. Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells. Pharmaceutics 2020; 12:pharmaceutics12020158. [PMID: 32075343 PMCID: PMC7076373 DOI: 10.3390/pharmaceutics12020158] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
- Tecnimede Group, 2710-089 Sintra, Portugal
| | - Adriana Ramos Tavares
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Daniel Alexandre Ferreira
- Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (D.A.F.); (C.G.)
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (D.A.F.); (C.G.)
- Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-964182278
| |
Collapse
|
14
|
Palm Tocotrienol-Adjuvanted Dendritic Cells Decrease Expression of the SATB1 Gene in Murine Breast Cancer Cells and Tissues. Vaccines (Basel) 2019; 7:vaccines7040198. [PMID: 31783698 PMCID: PMC6963955 DOI: 10.3390/vaccines7040198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to evaluate the effectiveness of immunotherapy using dendritic cells (DC) pulsed with tumor lysate (a DC vaccine) in combination with daily supplementation of tocotrienol-rich fraction (TRF) to potentiate anti-tumor immune responses. We had previously reported that DC-vaccine immunotherapy together with TRF supplementation induced protective immunity to tumor challenge. Breast cancer was induced in female BALB/c mice. The mice were randomly assigned into the treatment groups. At autopsy, peripheral blood was collected in heparinized tube and the expression of cell surface molecules (CD40, CD80, CD83, and CD86) that are crucial for T-cell activation and survival were analyzed by flow cytometry. Tumor was excised from each animal and snap-frozen. Total RNA was extracted from each tumor tissue for microarray and gene expression analysis. Total protein was extracted from tumor tissue for protein expression studies using Western blotting. The results show that systemic administration of 1 mg TRF daily in combination with DC-vaccine immunotherapy (DC + TL + TRF) caused a marked reduction (p < 0.05) of tumor size and increased (p < 0.05) the survival rates of the tumor-inoculated mice. The expression of CD40, CD80, CD83, and CD86 were upregulated in peripheral blood from the DC + TL + TRF group compared to other groups. In addition, there was higher expression of FasL in tumor-excised mice from the DC + TL + TRF group compared to other groups. FasL plays an important role in maintaining immune privilege and is required for cytotoxic T-lymphocyte (CTL) activity. Microarray analysis identified several genes involved in the regulation of cancer. In this study, we focused on the special AT rich binding protein 1 (SATB1) gene, which was reported to have dual functions, one of which was to induce aggressive growth in breast cancer cells. Tumors from DC + TL + TRF mice showed lower (p < 0.05) expression of SATB1 gene. Further study will be conducted to investigate the molecular functions of and the role of SATB1 in 4T1 mammary cancer cells and DC. In conclusion, TRF supplementation can potentiate the effectiveness of DC-vaccine immunotherapy.
Collapse
|
15
|
Calmeiro J, Carrascal M, Gomes C, Falcão A, Cruz MT, Neves BM. Biomaterial-based platforms for in situ dendritic cell programming and their use in antitumor immunotherapy. J Immunother Cancer 2019; 7:238. [PMID: 31484548 PMCID: PMC6727507 DOI: 10.1186/s40425-019-0716-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are central players in the immune system, with an exquisite capacity to initiate and modulate immune responses. These functional characteristics have led to intense research on the development of DC-based immunotherapies, particularly for oncologic diseases. During recent decades, DC-based vaccines have generated very promising results in animal studies, and more than 300 clinical assays have demonstrated the safety profile of this approach. However, clinical data are inconsistent, and clear evidence of meaningful efficacy is still lacking. One of the reasons for this lack of evidence is the limited functional abilities of the used ex vivo-differentiated DCs. Therefore, alternative approaches for targeting and modulating endogenous DC subpopulations have emerged as an attractive concept. Here, we sought to revise the evolution of several strategies for the in situ mobilization and modulation of DCs. The first approaches using chemokine-secreting irradiated tumor cells are addressed, and special attention is given to the cutting-edge injectable bioengineered platforms, programmed to release chemoattractants, tumor antigens and DC maturating agents. Finally, we discuss how our increasing knowledge of DC biology, the use of neoantigens and their combination with immune checkpoint inhibitors can leverage the refinement of these polymeric vaccines to boost their antitumor efficacy.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Mylène Carrascal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Tecnimede Group, Sintra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Agra do Crasto - Edifício 30, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Deicher A, Andersson R, Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int 2018; 18:85. [PMID: 29946224 PMCID: PMC6006559 DOI: 10.1186/s12935-018-0585-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Anton Deicher
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
- Faculty of Medicine, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Bobby Tingstedt
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Gert Lindell
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
17
|
Phanstiel O. An overview of polyamine metabolism in pancreatic ductal adenocarcinoma. Int J Cancer 2017; 142:1968-1976. [PMID: 29134652 DOI: 10.1002/ijc.31155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest major cancers, with a five year survival rate of less than 8%. With current therapies only giving rise to modest life extension, new approaches are desperately needed. Even though targeting polyamine metabolism is a proven anticancer strategy, there are no reports, which thoroughly survey the literature describing the role of polyamine biosynthesis and transport in PDAC. This review seeks to fill this void by describing what is currently known about polyamine metabolism in PDAC and identifies new targets and opportunities to treat this disease. Due to the pleiotropic effects that polyamines play in cells, this review covers diverse areas ranging from polyamine metabolism (biosynthesis, catabolism and transport), as well as the potential role of polyamines in desmoplasia, autophagy and immune privilege. Understanding these diverse roles provides the opportunity to design new therapies to treat this deadly cancer via polyamine depletion.
Collapse
Affiliation(s)
- Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL
| |
Collapse
|
18
|
Rodríguez JA. HLA-mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T-cell activation. Oncol Lett 2017; 14:4415-4427. [PMID: 29085437 PMCID: PMC5649701 DOI: 10.3892/ol.2017.6784] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
Abstract
Although the immune system provides protection from cancer by means of immunosurveillance, which serves a major function in eliminating cancer cells, it may also lead to cancer immunoediting, molding tumor immunogenicity. Cancer cells exploit several molecular mechanisms to thwart immune-mediated death by disabling cellular components of the immune system associated with tumor recognition and rejection. Human leukocyte antigen (HLA) molecules are mandatory for the immune recognition and subsequent killing of neoplastic cells by the immune system, as tumor antigens must be presented in an HLA-restricted manner to be recognized by T-cell receptors. Impaired HLA-I expression prevents the activation of cytotoxic immune mechanisms, whereas impaired HLA-II expression affects the antigen-presenting capability of antigen presenting cells. Aberrant HLA-G expression by cancer cells favors immune escape by inhibiting the activities of virtually all immune cells. The development of cancer therapies based on T-cell activation must consider these HLA-associated immune evasion mechanisms, as alterations in their expression occur early and frequently in the majority of types of cancer, and have an adverse impact on the clinical response to immunotherapy. Herein, the concept of altered HLA expression as a mechanism exploited by tumors to escape immune control and induce an immunosuppressive environment is reviewed. A number of novel clinical immunotherapeutic approaches used for cancer treatment are also reviewed, and strategies for overcoming the limitations of these immunotherapeutic interventions are proposed.
Collapse
Affiliation(s)
- Josefa A Rodríguez
- Cancer Biology Research Group, National Cancer Institute of Colombia, 111511 Bogotá, Colombia
| |
Collapse
|
19
|
Lundgren S, Karnevi E, Elebro J, Nodin B, Karlsson MCI, Eberhard J, Leandersson K, Jirström K. The clinical importance of tumour-infiltrating macrophages and dendritic cells in periampullary adenocarcinoma differs by morphological subtype. J Transl Med 2017; 15:152. [PMID: 28673320 PMCID: PMC5496326 DOI: 10.1186/s12967-017-1256-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic cells (DC) and tumour-associated macrophages (TAM) are essential in linking the innate and adaptive immune response against tumour cells and tumour progression. These cells are also potential target for immunotherapy as well as providing a handle to investigate immune status in the tumour microenvironment. The aim of the present study was to examine their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, with particular reference to morphological subtype. Methods The density of tolerogenic immature CD1a+ dendritic cells (DC), and MARCO+, CD68+ and CD163+ tissue-associated macrophages (TAM) was analysed by immunohistochemistry in tissue micro arrays with tumours from 175 consecutive cases of periampullary adenocarcinoma who had undergone pancreaticoduodenectomy, 110 with pancreatobiliary type (PB-type) and 65 with intestinal type (I-type) morphology. Kaplan–Meier and Cox regression analyses were applied to determine the impact of immune cell infiltration on 5-year overall survival (OS). Results High density of CD1a+ DCs was an independent prognostic factor for a reduced OS in PB-type but not in I-type tumours (adjusted HR = 2.35; 95% CI 1.13–4.87). High density of CD68+ and CD163+ TAM was significantly associated with poor OS in the whole cohort, however only in unadjusted analysis (HR = 1.67; 95% CI 1.06–2.63, and HR = 1.84; 95% CI 1.09–3.09, respectively) and not in strata according to morphological subtype. High density of MARCO+ macrophages was significantly associated with poor prognosis in I-type but not in PB-type tumours (HR = 2.14 95% CI 1.03–4.44), and this association was only evident in patients treated with adjuvant chemotherapy. The prognostic value of the other investigated immune cells did not differ significantly in strata according to adjuvant chemotherapy. Conclusions The results from this study demonstrate that high infiltration of tolerogenic immature DCs independently predicts a shorter survival in patients with PB-type periampullary adenocarcinoma, and that high density of the MARCO+ subtype of TAMs predicts a shorter survival in patients with I-type tumours. These results emphasise the importance of taking morphological subtype into account in biomarker studies related to periampullary cancer, and indicate that therapies targeting dendritic cells may be of value in the treatment of PB-type tumours, which are associated with the worst prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Lundgren
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden.
| | - Emelie Karnevi
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Jacob Elebro
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Center for Molecular Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| |
Collapse
|
20
|
Koido S, Okamoto M, Shimodaira S, Sugiyama H. Wilms’ tumor 1 (WT1)-targeted cancer vaccines to extend survival for patients with pancreatic cancer. Immunotherapy 2016; 8:1309-1320. [PMID: 27993090 DOI: 10.2217/imt-2016-0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite novel chemotherapy treatments, pancreatic ductal adenocarcinoma (PDA) remains a lethal disease. New targeted cancer vaccines may represent a viable option for patients with PDA. The Wilms’ tumor 1 (WT1) antigen is one of the most widely expressed tumor-associated antigens in various types of tumors, including PDA. Recent reports have indicated that WT1-targeted cancer vaccines for patients with PDA mediated a potent antitumor effect when combined with chemotherapy in preclinical and clinical studies. This review summarizes the early-phase clinical trials of WT1-targeted cancer vaccines (peptide vaccines and dendritic cell-based vaccines) for PDA. Moreover, we will discuss future strategies for PDA treatments using WT1-specific cancer vaccines combined with immune checkpoint therapies to maximize the clinical effectiveness of PDA treatments.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa City, Chiba 277-8567, Japan
- Institute of Clinical Medicine & Research, The Jikei University School of Medicine, Kashiwa City, Chiba 277-8567, Japan
| | - Masato Okamoto
- Department of Advanced Immunotherapeutics, Kitasato University School of Pharmacy, Tokyo 108-8641, Japan
| | | | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines: A review of recent developments and their potential pediatric application. Hum Vaccin Immunother 2016; 12:2232-9. [PMID: 27245943 DOI: 10.1080/21645515.2016.1179844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For many cancers the use of conventional chemotherapy has been maximized, and further intensification of chemotherapy generally results in excess toxicity with little long-term benefit for cure. Many tumors become resistant to chemotherapy, making the investigation of novel approaches such as immunotherapy of interest. Because the tumor microenvironment is known to promote immune tolerance and down regulate the body's natural defense mechanisms, modulating the immune system with the use of dendritic cell (DC) therapy is an attractive approach. Thousands of patients with diverse tumor types have been treated with DC vaccines. While antigen specific immune responses have been reported, the duration and magnitude of these responses are typically weak, and objective clinical responses have been limited. DC vaccine generation and administration is a multi-step process with opportunities for improvement in source of DC for vaccine, selection of target antigen, and boosting effector cell response via administration of vaccine adjuvant or concomitant pharmacologic immunomodulation. In this review we will discuss recent developments in each of these areas and highlight elements that could be moved into pediatric clinical trials.
Collapse
Affiliation(s)
- Jennifer D Elster
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| | - Deepa K Krishnadas
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| | - Kenneth G Lucas
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| |
Collapse
|