1
|
Zhou Q, Kerbl-Knapp J, Zhang F, Korbelius M, Kuentzel KB, Vujić N, Akhmetshina A, Hörl G, Paar M, Steyrer E, Kratky D, Madl T. Metabolomic Profiles of Mouse Tissues Reveal an Interplay between Aging and Energy Metabolism. Metabolites 2021; 12:17. [PMID: 35050139 PMCID: PMC8779655 DOI: 10.3390/metabo12010017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Energy metabolism, including alterations in energy intake and expenditure, is closely related to aging and longevity. Metabolomics studies have recently unraveled changes in metabolite composition in plasma and tissues during aging and have provided critical information to elucidate the molecular basis of the aging process. However, the metabolic changes in tissues responsible for food intake and lipid storage have remained unexplored. In this study, we aimed to investigate aging-related metabolic alterations in these tissues. To fill this gap, we employed NMR-based metabolomics in several tissues, including different parts of the intestine (duodenum, jejunum, ileum) and brown/white adipose tissues (BAT, WAT), of young (9-10 weeks) and old (96-104 weeks) wild-type (mixed genetic background of 129/J and C57BL/6) mice. We, further, included plasma and skeletal muscle of the same mice to verify previous results. Strikingly, we found that duodenum, jejunum, ileum, and WAT do not metabolically age. In contrast, plasma, skeletal muscle, and BAT show a strong metabolic aging phenotype. Overall, we provide first insights into the metabolic changes of tissues essential for nutrient uptake and lipid storage and have identified biomarkers for metabolites that could be further explored, to study the molecular mechanisms of aging.
Collapse
Affiliation(s)
- Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jakob Kerbl-Knapp
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350001, China
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Barbara Kuentzel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Gerd Hörl
- Otto-Loewi Research Center, Physiological Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Margret Paar
- Otto-Loewi Research Center, Physiological Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Steyrer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
2
|
Choi HH, Kim Y. Use of Olive Oil for the Treatment of a Phytobezoar: A Case Report. THE EWHA MEDICAL JOURNAL 2021; 44:89-92. [DOI: 10.12771/emj.2021.44.3.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/27/2021] [Accepted: 07/16/2021] [Indexed: 08/30/2023]
|
3
|
Mari RDB, Stabille SR, de Faria HG, Pereira JNB, Guimarães JP, Marinsek GP, de Souza RR. Balanced Caloric Restriction Minimizes Changes Caused by Aging on the Colonic Myenteric Plexus. J Diet Suppl 2018; 15:285-299. [PMID: 28759281 DOI: 10.1080/19390211.2017.1341446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aging can promote significant morphofunctional changes in the gastrointestinal tract (GIT). Regulation of GIT motility is mainly controlled by the myenteric neurons of the enteric nervous system. Actions that aim at decreasing the aging effects in the GIT include those related to diet, with caloric restriction (CR). The CR is achieved by controlling the amount of food or by manipulating the components of the diet. Therefore, the objective of this study was to evaluate different levels of CR on the plasticity of nicotinamide adenine dinucleotide phosphate- (NADPH-) reactive myenteric neurons in the colon of Wistar rats during the aging process using ultrastructural (transmission electron microscopy) and morphoquantitative analysis. Wistar male rats (Rattus norvegicus) were distributed into 4 groups (n = 10/group): C, 6-month-old animals; SR, 18-month-old animals fed a normal diet; CRI, 18-month-old animals fed a 12% CR diet; CRII, 18-month-old animals fed a 31% CR diet. At 6 months of age, animals were transferred to the laboratory animal facility, where they remained until 18 months of age. Animals of the CRI and CRII groups were submitted to CR for 6 months. In the ultrastructural analysis, a disorganization of the periganglionar matrix with the aging was observed, and this characteristic was not observed in the animals that received hypocaloric diet. It was observed that the restriction of 12.5% and 31% of calories in the diet minimized the increase in density and cell profile of the reactive NADPH neurons, increased with age. This type of diet may be adapted against gastrointestinal disturbances that commonly affect aging individuals.
Collapse
Affiliation(s)
- Renata de Britto Mari
- a São Paulo State University (Unesp) , Institute of Biosciences , São Vicente , São Paulo , Brazil
| | - Sandra Regina Stabille
- b Department of Morphological Sciences , Maringá State University , Maringá , Paraná , Brazil
| | | | | | - Juliana Plácido Guimarães
- e Laboratory of Marine and Coastal Organisms , Santa Cecilia University , Santos , São Paulo , Brazil
| | | | - Romeu Rodrigues de Souza
- f Department of Physical Education , São Judas Tadeu University , São Paulo , São Paulo , Brazil
| |
Collapse
|