1
|
Kaimonov MR, Safronova TV. Materials in the Na 2O-CaO-SiO 2-P 2O 5 System for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5981. [PMID: 37687671 PMCID: PMC10488989 DOI: 10.3390/ma16175981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Calcium phosphate materials and materials based on silicon dioxide have been actively studied for more than 50 years due to their high biocompatibility and bioactivity. Hydroxyapatite and tricalcium phosphate are the most known among calcium phosphate materials, and Bioglass 45S5 is the most known material in the Na2O-CaO-SiO2-P2O5 system. Each of these materials has its application limits; however, some of them can be eliminated by obtaining composites based on calcium phosphate and bioglass. In this article, we provide an overview of the role of silicon and its compounds, including Bioglass 45S5, consider calcium phosphate materials, talk about the limits of each material, demonstrate the potential of the composites based on them, and show the other ways of obtaining composite ceramics in the Na2O-CaO-SiO2-P2O5 system.
Collapse
Affiliation(s)
- Maksim R. Kaimonov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
| | - Tatiana V. Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| |
Collapse
|
2
|
Gabor AG, Duma VF, Fabricky MMC, Marsavina L, Tudor A, Vancea C, Negrea P, Sinescu C. Ceramic Scaffolds for Bone Augmentation: Design and Characterization with SEM and Confocal Microscopy. MATERIALS 2022; 15:ma15144899. [PMID: 35888366 PMCID: PMC9322854 DOI: 10.3390/ma15144899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Bone scaffolds must fulfil numerous and sometimes contradictory characteristics: biocompatibility, bioactivity, high porosity, and appropriate mechanical strength. To tackle some of these issues, this study has several aims for the development of such scaffolds for dentistry applications: (i) to utilize appropriate materials (ceramics and sponges) and to introduce a novel, potentially performant ceramic material; (ii) to characterize the obtained scaffolds by using a range of methods; (iii) to compare and to correlate the assessment results with the scope to validate them reciprocally. There are two commercially available dental ceramics (i.e., Ceramco iC Natural Enamel (E) and Ceramco iC Natural Dentine (D), (DeguDent GmbH, Hanau-Wolfgang, Deutschland)) that are considered, as well as a new-developed porcelain (ceramic C). To obtain porous structures of scaffolds, each ceramic is introduced in two different sponges: a denser one, green (G) and a less dense one, blue (B). A total of 60 samples are manufactured and divided in six study groups, obtained by combining the above materials: GE, BE, GD, BD, GC, and BC (where the first letter represents the sponge type and the second one the utilized ceramic). Several methods are applied to characterize their chemical composition, as well as their macro- and micro-porosity: X-ray Diffraction (XRD), apparent porosity measurements, scanning electronic microscopy (SEM), and confocal microscopy (CM). The latter two methods image the inner (porous) and the outer/cortical (denser) areas of the samples. The results show a good porosity (i.e., dimensions and uniformity of pores) of around 65% for the final group BC, with satisfactory values of around 51% for BD and GC. A certain correlation is made between SEM, CM, and the apparent porosity results. The biocompatibility of the new ceramic C is demonstrated. Finally, a necessary trade-off is made with the mechanical strength of the obtained scaffolds, which was also evaluated. From this point of view, Group BD has the highest compressive strength of around 4 MPa, while Group BC comes second, with around 2 MPa. This trade-off between porosity and mechanical strength suggests a choice between Groups BC and BD, which are the best with regard to the porosity and mechanical strength criterium, respectively.
Collapse
Affiliation(s)
- Alin Gabriel Gabor
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
| | - Virgil-Florin Duma
- 3OM Optomechatronics Group, Faculty of Engineering, Aurel Vlaicu University of Arad, Str. Elena Dragoi No. 2, 310177 Arad, Romania
- Faculty of Mechanics, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania;
- Correspondence: (V.-F.D.); (C.S.); Tel.: +40-751-511-451 (V.-F.D.)
| | - Mihai M. C. Fabricky
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
| | - Liviu Marsavina
- Faculty of Mechanics, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania;
| | - Anca Tudor
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
| | - Cosmin Vancea
- Faculty of Chemistry and Environmental Engineering, Polytechnic University of Timisoara, 6 Vasile Parvan Ave., 300223 Timisoara, Romania; (C.V.); (P.N.)
| | - Petru Negrea
- Faculty of Chemistry and Environmental Engineering, Polytechnic University of Timisoara, 6 Vasile Parvan Ave., 300223 Timisoara, Romania; (C.V.); (P.N.)
| | - Cosmin Sinescu
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (A.G.G.); (M.M.C.F.); (A.T.)
- Correspondence: (V.-F.D.); (C.S.); Tel.: +40-751-511-451 (V.-F.D.)
| |
Collapse
|
3
|
Information System for Selection of Conditions and Equipment for Mammalian Cell Cultivation. DATA 2021. [DOI: 10.3390/data6030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the past few decades, animal cell culture technology has advanced significantly. It is now considered a reliable, functional, and relatively well-developed technology. At present, biotherapeutic drugs are synthesized using cell culture techniques by large manufacturing enterprises that produce products for commercial use and clinical research. The reliable implementation of mammalian cell culture technology requires the optimization of a number of variables, including the culture environment and bioreactor conditions, suitable cell lines, operating costs, efficient process management and, most importantly, quality. Successful implementation also requires an appropriate process development strategy, industrial scale, and characteristics, as well as the certification of sustainable procedures that meet the requirements of current regulations. All of this has led to a trend of increasing research in the field of biotechnology and, as a result, to a great accumulation of scientific information which, however, remains fragmentary and non-systematic. The development of information and network technologies allow us to solve this problem. Information system creation allows for implementation of the modern concept of integrating various structured and unstructured data, as well as the collection of information from internal and external sources. We propose and develop an information system which contains the conditions and various parameters of cultivation processes. The associated ranking system is the result of the set of recommendations—both from technological and hardware solutions—which allow for choosing the optimal conditions for the cultivation of mammalian cells at the stage of scientific research, thereby significantly reducing the time and cost of work. The proposed information system allows for the accumulation of experience regarding existing technologies for the cultivation of mammalian cells, along with application to the development of new technologies. The main goal of the present work is to discuss information systems, the organizational support of scientific research in the field of mammalian cell cultivation, and to provide a detailed description of the developed system and its main modules, including the conceptual and logical scheme of the database.
Collapse
|
4
|
Thakur S, Garg S, Kaur G, Pandey OP. Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO-(10-x) MgO-60SiO 2-20CaO-10 P 2O 5 (2 ≤ x ≤ 8) sol-gel glasses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:89. [PMID: 28484926 DOI: 10.1007/s10856-017-5901-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
In the present study, novel glasses xSrO-(10-x) MgO-60SiO2-20CaO-10 P2O5 (2 ≤ x ≤ 8, in steps of 2) are synthesized via sol-gel method. The current work focusses on the evaluation of mechanical, physical and biocompatible properties for sol-gel glasses. The pore size and surface area of these glasses were studied using BET analysis. The structural aspect of the glasses/glass ceramics was studied by XRD and Raman spectroscopy. The cytotoxicity assays were conducted for MG63 human osteosarcoma cell line. Furthermore, the as prepared glasses were used for the fabrication of 3-D porous scaffolds via polymer replication method. The loaded green bodies have been sintered at 700, 800 and 900 °C and were kept for 6 h to densify the glass network. The effect of sintering temperature on the structure and properties of as prepared scaffolds were analyzed via scanning electron microscopy (SEM) and porosity calculations.
Collapse
Affiliation(s)
- Swati Thakur
- Department of Physics, Punjabi University, Patiala, 147002, Punjab, India
| | - Shikha Garg
- Department of Physics, Punjabi University, Patiala, 147002, Punjab, India
| | - Gurbinder Kaur
- School of Physics & Materials Science, Thapar University, Patiala, 147004, Punjab, India.
| | - Om Prakash Pandey
- School of Physics & Materials Science, Thapar University, Patiala, 147004, Punjab, India.
| |
Collapse
|
5
|
Wang C, Chen H, Zhu X, Xiao Z, Zhang K, Zhang X. An improved polymeric sponge replication method for biomedical porous titanium scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1192-1199. [DOI: 10.1016/j.msec.2016.03.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|