1
|
Dhole A, Shelat H. Non-Rhizobial Endophytes Associated with Nodules of Vigna radiata L. and Their Combined Activity with Rhizobium sp. Curr Microbiol 2022; 79:103. [PMID: 35157135 DOI: 10.1007/s00284-022-02792-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Root nodules of legume plants are devoted for hosting endophytic symbiotic bacteria that fix atmospheric nitrogen but recently proved as a niche for various non-rhizobial endophytes (NRE) also. In the present investigation, one rhizobial and two NRE were isolated and characterized as Rhizobium sp. AAU B3, Bacillus sp. AAU B6 and Bacillus sp. AAU B12. These isolates were studied for in vitro biocontrol activity against two pathogenic fungi. NRE isolates exhibited antifungal activity against root rot causing Macrophomina phaseolina (ITCC-6749) isolated from Vigna radiata and wilt causing pathogen Fusarium udum Butler isolated from Cajanus cajan in liquid as well as on solid medium. Furthermore, their antagonism was increased markedly when combined with Rhizobium sp. Moreover, Bacillus sp. AAU B6 showed amplification of the zwittermicin A gene (~ 950 bp) which is evident for the production of antibiotics. All three isolates showed HCN production in vitro also, Bacillus sp. AAU B12 exhibited amplification of its gene hcnC. Pathogenic fungal hyphae became thin, transparent, and bent as well as fungi lost their normal growth and branching patterns when exposed to volatile compounds produced by NRE. All the 3 isolates produced siderophores, however siderophore production was increased considerably when all three strains are mixed together. Furthermore, all the three isolates produced cell wall degrading enzymes (chitinase, protease, and cellulase) but lipolytic activity was exhibited only by Rhizobium sp. AAU B3. When NRE inoculated in combination of Rhizobium; overcomes the disease severity against M. phaseolina under pot study. Thus, from present study it is concluded that co-inoculation of NRE and Rhizobium sp. can be exploited as biocontrol bio-agents against M. phaseolina in green gram at field levels.
Collapse
Affiliation(s)
- Archana Dhole
- B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, 388110, India.
| | - Harsha Shelat
- B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, 388110, India
| |
Collapse
|
2
|
Chandel A, Mann R, Kaur J, Norton S, Edwards J, Spangenberg G, Sawbridge T. Implications of Seed Vault Storage Strategies for Conservation of Seed Bacterial Microbiomes. Front Microbiol 2021; 12:784796. [PMID: 34925291 PMCID: PMC8678515 DOI: 10.3389/fmicb.2021.784796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Global seed vaults are important, as they conserve plant genetic resources for future breeding to improve crop yield and quality and to overcome biotic and abiotic stresses. However, little is known about the impact of standard storage procedures, such as seed drying and cold storage on the seed bacterial community, and the ability to recover seed-associated bacteria after storage. In this study, soybean [Glycine max (L.) Merr.] seeds were analyzed to characterize changes in the bacterial community composition and culturability under varying storage conditions. The G. max bacterial microbiome was analyzed from undried seed, dried seed, and seed stored for 0, 3, 6, and 14months. Storage temperatures consisted of -20°C, 4°C, and room temperature (RT), with -20°C being commonly used in seed storage vaults globally. The seed microbiome of G. max was dominated by Gammaproteobacteria under all conditions. Undried seed was dominated by Pantoea (33.9%) and Pseudomonas (51.1%); however, following drying, the abundance of Pseudomonas declined significantly (0.9%), Pantoea increased significantly (73.6%), and four genera previously identified including Pajaroellobacter, Nesterenkonia, env.OPS_17, and Acidibacter were undetectable. Subsequent storage at RT, 4, or -20°C maintained high-abundance Genera at the majority of time points, although RT caused greater fluctuations in abundances. For many of the low-abundance Genera, storage at -20°C resulted in their gradual disappearance, whereas storage at 4°C or RT resulted in their more rapid disappearance. The changes in seed bacterial composition were reflected by cultured bacterial taxa obtained from the stored G. max seed. The main taxa were largely culturable and had similar relative abundance, while many, but not all, of the low-abundance taxa were also culturable. Overall, these results indicate that the initial seed drying affects the seed bacterial composition, suggesting that microbial isolation prior to seed drying is recommended to conserve these microbes. The standard seed storage condition of -20°C is most suitable for conservation of the bacterial seed microbiome, as this storage temperature slows down the loss of seed bacterial diversity over longer time periods, particularly low-abundance taxa.
Collapse
Affiliation(s)
- Ankush Chandel
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Ross Mann
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Jatinder Kaur
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Sally Norton
- Agriculture Victoria Research, Australian Grains Genebank, Horsham, VIC, Australia
| | - Jacqueline Edwards
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Timothy Sawbridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Coque JJR, Álvarez-Pérez JM, Cobos R, González-García S, Ibáñez AM, Diez Galán A, Calvo-Peña C. Advances in the control of phytopathogenic fungi that infect crops through their root system. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:123-170. [PMID: 32446411 DOI: 10.1016/bs.aambs.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Productivity and economic sustainability of many herbaceous and woody crops are seriously threatened by numerous phytopathogenic fungi. While symptoms associated with phytopathogenic fungal infections of aerial parts (leaves, stems and fruits) are easily observable and therefore recognizable, allowing rapid or preventive action to control this type of infection, the effects produced by soil-borne fungi that infect plants through their root system are more difficult to detect. The fact that these fungi initiate infection and damage underground implies that the first symptoms are not as easily noticeable, and therefore both crop yield and plant survival are frequently severely compromised by the time the infection is found. In this paper we will review and discuss recent insights into plant-microbiota interactions in the root system crucial to understanding the beginning of the infectious process. We will also review different methods for diminishing and controlling the infection rate by phytopathogenic fungi penetrating through the root system including both the traditional use of biocontrol agents such as antifungal compounds as well as some new strategies that could be used because of their effective application, such as nanoparticles, virus-based nanopesticides, or inoculation of plant material with selected endophytes. We will also review the possibility of modeling and influencing the composition of the microbial population in the rhizosphere environment as a strategy for nudging the plant-microbiome interactions toward enhanced beneficial outcomes for the plant, such as controlling the infectious process.
Collapse
Affiliation(s)
- Juan José R Coque
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain.
| | | | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | | | - Ana M Ibáñez
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | - Alba Diez Galán
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| |
Collapse
|
4
|
Egamberdieva D, Wirth S, Abd-Allah EF. Tripartite Interaction Among Root-Associated Beneficial Microbes Under Stress. RHIZOTROPHS: PLANT GROWTH PROMOTION TO BIOREMEDIATION 2017:219-236. [DOI: 10.1007/978-981-10-4862-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Egamberdieva D, Wirth S, Behrendt U, Abd Allah EF, Berg G. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria. Front Microbiol 2016; 7:209. [PMID: 26941730 PMCID: PMC4766286 DOI: 10.3389/fmicb.2016.00209] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research Müncheberg, Germany
| | - Stephan Wirth
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research Müncheberg, Germany
| | - Undine Behrendt
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research Müncheberg, Germany
| | - Elsayed F Abd Allah
- Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University Riyadh, Saudi Arabia
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| |
Collapse
|