1
|
Chen L, Liu X, Zheng K, Wang Y, Li M, Zhang Y, Cui Y, Deng S, Liu S, Zhang G, Li L, He Y. Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules 2024; 29:5107. [PMID: 39519748 PMCID: PMC11547421 DOI: 10.3390/molecules29215107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cordyceps primarily consists of ascomycetes, a parasitic fungus that infects insects and arthropods. Recently, Cordyceps has been shown to manifest a diverse range of pharmacological activities, rendering it applicable for the treatment and mitigation of various diseases, such as diabetes, acute liver injury, and colitis. Many active constituents have been identified from Cordyceps sinensis, including cordycepin, adenosine, sterols, and polysaccharides. Polysaccharides constitute a primary active component of Cordyceps, exhibiting immunomodulatory effects. We searched the Web of Science database with the keywords of cordyceps, polysaccharide, and immune modulation; collected related studies from 2004 to 2024; and eliminated articles with low influence and workload. A review of the research advancements regarding the immunomodulatory effects of Cordyceps polysaccharides was conducted with the aim of furnishing valuable reference information. Research indicates that polysaccharides exhibiting immunomodulatory activity are predominantly sourced from Cordyceps sinensis and Cordyceps militaris. Immunological experimental results demonstrate that Cordyceps polysaccharides can augment the activities of macrophages, lymphocytes, and dendritic cells while fostering the expression of immune-active substances such as cytokines and chemokines. Furthermore, animal experiments have substantiated the immunomodulatory effects of Cordyceps polysaccharides. These effects encompass ameliorating immune suppression induced by drugs or radiation, enhancing immune organ indices, elevating the expression of immunoreactive substances, and mitigating immune evasion prompted by tumors. In conclusion, Cordyceps polysaccharides exhibit significant immunomodulatory activity and merit further investigation.
Collapse
Affiliation(s)
- Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu 610097, China;
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Kaiyue Zheng
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Sichun Deng
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Shiqi Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Gaoju Zhang
- Sichuan Chinese Herb Preparation, Chengdu 611732, China;
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| |
Collapse
|
2
|
Qiao H, Chen J, Yang S. Enhanced polysaccharide production through quorum sensing system in Cordyceps militaris. J Basic Microbiol 2024; 64:e2400103. [PMID: 38771080 DOI: 10.1002/jobm.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
This study aimed to enhance extracellular polysaccharide (EPS) production in Cordyceps militaris by constructing a quorum sensing (QS) system to regulate the expression of biosynthetic enzyme genes, including phosphoglucomutase, hexokinase, phosphomannomutase, polysaccharide synthase, and UDP-glucose 4-epimerase genes. The study found higher EPS concentrations in seven recombinant strains compared to the wild-type C. militaris, indicating that the overexpression of key enzyme genes increased EPS production. Among them, the CM-pgm-2 strain exhibited the highest EPS production, reaching a concentration of 3.82 ± 0.26 g/L, which was 1.52 times higher than the amount produced by the wild C. militaris strain. Additionally, the regulatory effects of aromatic amino acids on the QS system of the CM-pgm-2 strain were investigated. Under the influence of 45 mg/L tryptophan, the EPS production in CM-pgm-2 reached 4.75 ± 0.20 g/L, representing a 1.90-fold increase compared to wild C. militaris strains. This study provided an effective method for the large-scale production of EPSs in C. militaris, and opened up new avenues for research into fungal QS mechanisms.
Collapse
Affiliation(s)
- Huang Qiao
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianshu Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
An N, Li K, Wang Y, Shen W, Huang X, Xu S, Wu L, Huang H. Biodegradable bio-film based on Cordyceps militaris and metal-organic frameworks for fruit preservation. Int J Biol Macromol 2024; 262:130095. [PMID: 38346621 DOI: 10.1016/j.ijbiomac.2024.130095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.
Collapse
Affiliation(s)
- Nan An
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ke Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weijian Shen
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing 210023, China
| | - Xingxu Huang
- International Research Center of Synthetic Biology, Nanjing Normal University, Nanjing 210023, China
| | - Shiqi Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
4
|
Gong R, Cao W, Huang H, Yu B, Chen H, Tao W, Luorong Q, Luo J, Zhang D. Antitumor Potential and Structure Characterization of Polysaccharides From Lagotis brevituba Maxim in the Tibetan Plateau. Front Nutr 2022; 9:921892. [PMID: 35903443 PMCID: PMC9320327 DOI: 10.3389/fnut.2022.921892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
This study purified two polysaccharides (LBMPs) from Lagotis brevituba Maxim in several steps. The chemical structure of LBMP-2 was determined by HPGPC, FT-IR, IC, 1H and 13C NMR, AFM, SEM, and TEM. The results show that LBMP-2 was mainly composed of GalA, and the Mw of LBMP-2 is 23.799 kDa. In addition, the antioxidant activity, and the antitumor activity in vitro and in vivo were studied. LBMP-2 has excellent antioxidant and antitumor capacity. The inhibition of tumor cell proliferation in vitro may result in the inhibition of aerobic respiration and glycolysis. Tumor growth inhibition in vivo may inhibit the expression of AMPK in tumors and enhance spleen function. Compared with conventional chemotherapy drug cyclophosphamide, LBMP-2 is less harmful to the body and safer. Therefore, LBMP-2 provides a potential source of antitumor drugs.
Collapse
|
5
|
Miao M, Yu WQ, Li Y, Sun YL, Guo SD. Structural Elucidation and Activities of Cordyceps militaris-Derived Polysaccharides: A Review. Front Nutr 2022; 9:898674. [PMID: 35711557 PMCID: PMC9193282 DOI: 10.3389/fnut.2022.898674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cordyceps militaris is a parasitic edible fungus and has been used as tonics for centuries. Polysaccharides are a major water-soluble component of C. militaris. Recently, C. militaris-derived polysaccharides have been given much attention due to their various actions including antioxidant, anti-inflammatory, anti-tumor, anti-hyperlipidemic, anti-diabetic, anti-atherosclerotic, and immunomodulatory effects. These bioactivities are determined by the various structural characteristics of polysaccharides including monosaccharide composition, molecular weight, and glycosidic linkage. The widespread use of advanced analytical analysis tools has greatly improved the elucidation of the structural characteristics of C. militaris-derived polysaccharides. However, the methods for polysaccharide structural characterization and the latest findings related to C. militaris-derived polysaccharides, especially the potential structure-activity relationship, have not been well-summarized in recent reviews of the literature. This review will discuss the methods used in the elucidation of the structure of polysaccharides and structural characteristics as well as the signaling pathways modulated by C. militaris-derived polysaccharides. This article provides information useful for the development of C. militaris-derived polysaccharides as well as for investigating other medicinal polysaccharides.
Collapse
|
6
|
|
7
|
Tumwine JK. Resurgence of non-communicable diseases in LMICs: a cause for concern? Afr Health Sci 2019; 19:VI-VIII. [PMID: 31656519 PMCID: PMC6794540 DOI: 10.4314/ahs.v19i2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|