1
|
Alleviation of liver cirrhosis and associated portal-hypertension by Astragalus species in relation to their UPLC-MS/MS metabolic profiles: a mechanistic study. Sci Rep 2022; 12:11884. [PMID: 35831335 PMCID: PMC9279505 DOI: 10.1038/s41598-022-15958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Liver cirrhosis is a late-stage liver disease characterized by excessive fibrous deposition triggering portal-hypertension (PH); the prime restrainer for cirrhosis-related complications. Remedies that can dually oppose hepatic fibrosis and lower PH, may prevent progression into decompensated-cirrhosis. Different Astragalus-species members have shown antifibrotic and diuretic actions with possible subsequent PH reduction. However, A.spinosus and A.trigonus were poorly tested for eliciting these actions. Herein, A.spinosus and A.trigonus roots and aerial parts extracts were subjected to comprehensive metabolic-fingerprinting using UHPLC-MS/MS resulting in 56 identified phytoconstituents, followed by chemometric untargeted analysis that revealed variable metabolic profiles exemplified by different species and organ types. Consequently, tested extracts were in-vivo evaluated for potential antifibrotic/anticirrhotic activity by assessing specific markers. The mechanistic prospective to induce diuresis was investigated by analyzing plasma aldosterone and renal-transporters gene-expression. Serum apelin and dimethylarginine-dimethylaminohydrolase-1 were measured to indicate the overall effect on PH. All extracts amended cirrhosis and PH to varying extents and induced diuresis via different mechanisms. Further, An OPLS model was built to generate a comprehensive metabolic-profiling of A.spinosus and A.trigonus secondary-metabolites providing a chemical-based evidence for their efficacious consistency. In conclusion, A.spinosus and A.trigonus organs comprised myriad pharmacologically-active constituents that act synergistically to ameliorate cirrhosis and associated PH.
Collapse
|
2
|
Wang L, Xiong F, Yang L, Wang B, Zhou G. Major Chemical Compounds and Mineral Elements of Astragalus membranaceus Cultivated on the Qinghai-Tibet Plateau with Different Planting Densities. Chem Biodivers 2021; 19:e202100778. [PMID: 34904789 DOI: 10.1002/cbdv.202100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022]
Abstract
Astragalus membranaceus is a well-known herb that is widely used in the food and pharmaceutical industries. However, its commercial development has been limited due to wild resource shortages. This study was conducted in 2018 and 2019 to assess the effect of planting density on the major chemical compounds and mineral elements and biomass yield of A. membranaceus. The biomass yield (7,700.956 kg) reached the maximum at M2 planting density in 2018. In 2019, astragaloside IV reached its maximum concentration (0.117 %) at M2 group, which was significantly different from the concentrations obtained at the other groups. Calycosin-7-O-β-D-glucoside (0.062 %) reach its maximum concentration in 2019 at M5, but not significant with M2. The concentration of major chemical compounds among the five groups in 2018 and 2019 all conformed to the Chinese Pharmacopoeia standards. In 2018, the mineral elements (Al, Ba, Fe, Li and Mn) content was higher at M2 than other groups. However, a general decrease in the mineral elements content was observed at M2 group in 2019. Enrichment analysis demonstrated that the enrichment capacity was highest for phosphorus. In conclusion, according to the TOPSIS results, M2 planting density was recommended as the optimal application. For optimal economic benefits, A. membranaceus should be harvested when it is 2 years old.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lucun Yang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Bo Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
3
|
Dou Y, Li X, Shi Y, Zhang J, Yuan Y, Zhou M, Wei X, Zhang X. Preparation, optimization and in vitro-in vivo evaluation of Shunxin sustained release granules. Chin Med 2019; 14:36. [PMID: 31572488 PMCID: PMC6757358 DOI: 10.1186/s13020-019-0255-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Shunxinzufang decoction is tutors, empirical formula and has been used in Chinese patients of HFpEF for several years. The aim of this study was to make into sustained release granules and select the best formula for the preparation of Shunxin sustained release granules and to evaluate its in vivo and in vitro drug release behavior. Methods Response surface methodology and Center composite design were applied to screen the optimal formula of Shunxin sustained release granules. HPLC was used to detect indicative ingredients—paeoniflorin, calycosin-7-glucoside and ferulic acid in Shunxin sustained release granules. The in vitro sustained release character of indicative ingredients was investigated in simulated digestive fluids. In-vivo process of active components was studied through pharmacokinetics. Results The optimal formula of Shunxin sustained release granules consisted of 35% shunxinzufang extract and 65% HPMC/starch (HPMC/starch ratio = 2:1). Three indicative components can be separated well under selected HPLC conditions. Compared with Shunxinzufang extract, the active components of Shunxin sustained release granules have obvious sustained-release character and improved bioavailability. Conclusion Shunxin sustained release granules has obvious sustained-release character and improved bioavailability.![]()
Collapse
Affiliation(s)
- Yinghuan Dou
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Xuefeng Li
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Yanbin Shi
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Yang Yuan
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Mengru Zhou
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Xiangxiang Wei
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| | - Xiaoying Zhang
- School of Basic Medical Sciences, Lanzhou University, Chengguan District, Donggang West Road No.199, Lanzhou, 730000 China
| |
Collapse
|
4
|
Huang W, Li L, Tian X, Yan J, Yang X, Wang X, Liao G, Qiu G. Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/Smad pathway. Mol Med Rep 2014; 11:2569-77. [PMID: 25435153 PMCID: PMC4337737 DOI: 10.3892/mmr.2014.3026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that Astragalus and Paeoniae Radix Rubra extract (APE) is capable of protecting against liver fibrosis in rats. The hypothesis of the present study was that APE exerts its anti‑fibrotic effect by mediating the transforming growth factor β (TGF‑β)/Smad signaling pathway. In order to investigate this hypothesis, a series of assays were designed to detect the effects of APE on cell proliferation, cell invasion and the activation of hepatic stellate cells (HSCs). In addition, the effects of APE on the TGF‑β/Smad signaling pathway were explored, with the aim of elucidating the underlying mechanisms. HSCs were initially isolated from normal rat liver. A number of assays were then employed in order to evaluate the effects of APE on the function of these cells. Cell proliferation was investigated using an MTT assay and cell invasion was observed with the use of transwell invasion chambers. Collagen synthesis was measured with a 3H‑proline incorporation assay and expression of α‑smooth muscle actin was used to determine the extent of HSC activation. Protein expression induced by TGF‑β1 in HSCs was investigated by western blot and immunofluorescence analyses. Plasminogen activator inhibitor type1 (PAI‑1) and urokinase‑type plasminogen activator (uPA) transcriptional activity was measured using reverse transcription polymerase chain reaction. The results demonstrated that APE (5‑80 µg/ml) significantly inhibited fetal bovine serum‑induced cell proliferation in a dose‑dependent manner. Cell invasion and activation of HSCs induced by TGF‑β1 were disrupted by treatment with APE in a dose‑dependent manner. TGF‑β1 was observed to increase the phosphorylation of Smad2/3, while APE administered at higher doses produced inhibitory effects on Smad2/3 phosphorylation. In addition, administration of APE abrogated the TGF‑β1‑induced reduction in Smad‑7 expression in a dose‑dependent manner. The results further indicated that APE treatment not only reduced PAI‑1 expression, but also increased uPA expression in a dose‑dependent manner. In conclusion, APE exerted inhibitory effects on cell proliferation, invasion and activation of HSCs, and the mechanisms underlying these effects may involve the TGF‑β1/Smad pathway.
Collapse
Affiliation(s)
- Weijuan Huang
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Li
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaopeng Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jinjin Yan
- Department of Pharmacology, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xinzheng Yang
- Department of Pharmacology, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xinlong Wang
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Guozhen Liao
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Genquan Qiu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|