Optimization of anti-corrosion performance of novel magnetic polyaniline-Chitosan nanocomposite decorated with silver nanoparticles on Al in simulated acidizing environment using RSM.
Int J Biol Macromol 2022;
195:329-345. [PMID:
34902445 DOI:
10.1016/j.ijbiomac.2021.11.207]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023]
Abstract
The suitability of newly synthesized magnetic polyaniline-Chitosan nanocomposite decorated with silver nanoparticles (Ag@PANI-CS-Fe3O4) as a robust corrosion inhibitor for Aluminum (Al) in a 5 M HCl environment has been investigated via Weight Loss (WL), Alternating Current (AC)-Impedance Spectroscopy (IS), Potentiontiodynamic polarization (Tafel plots), and Scanning Electron Microscopy (SEM) techniques. The protection efficiency (PE) was mathematically modeled using the Response Surface Methodology (RSM) to fit an empirical relation in terms of temperature, nanocomposite concentration, and time using the face-centered central composite design. The model was accurate with a coefficient of determination (R2 = 99.27%). The negative Gibb's free energy of adsorption (ΔGads) values confirmed the spontaneity of Freundlich adsorption isotherm process on Al in 5 M HCl solution. The optimization simulation yielded maximum protection efficiency (of 97.88%) at 5 mg/L nanocomposite concentration, 1 h time, and an intermediate temperature of 304.8 K. Furthermore, the sensitivity of PE was evaluated to find that the low temperature 303 K is favorable for PE, whereas higher temperature will act adversely on PE. The results obtained by the RSM model are in agreement with the experimental observations.
Collapse