1
|
Patel MN, Patel AJ, Nandpal MN, Raval MA, Patel RJ, Patel AA, Paudel KR, Hansbro PM, Singh SK, Gupta G, Dua K, Patel SG. Advancing against drug-resistant tuberculosis: an extensive review, novel strategies and patent landscape. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03466-0. [PMID: 39377922 DOI: 10.1007/s00210-024-03466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Drug-resistant tuberculosis (DR-TB) represents a pressing global health issue, leading to heightened morbidity and mortality. Despite extensive research efforts, the escalation of DR-TB cases underscores the urgent need for enhanced prevention, diagnosis, and treatment strategies. This review delves deep into the molecular and genetic origins of different types of DR-TB, highlighting recent breakthroughs in detection and diagnosis, including Rapid Diagnostic Tests like Xpert Ultra, Whole Genome Sequencing, and AI-based tools along with latest viewpoints on diagnosis and treatment of DR-TB utilizing newer and repurposed drug molecules. Special emphasis is given to the pivotal role of novel drugs and discusses updated treatment regimens endorsed by governing bodies, alongside innovative personalized drug-delivery systems such as nano-carriers, along with an analysis of relevant patents in this area. All the compiled information highlights the inherent challenges of current DR-TB treatments, discussing their complexity, potential side effects, and the socioeconomic strain they impose, particularly in under-resourced regions, emphasizing the cost-effective and accessible solutions. By offering insights, this review aims to serve as a compass for researchers, healthcare practitioners, and policymakers, emphasizing the critical need for ongoing R&D to improve treatments and broaden access to crucial TB interventions.
Collapse
Affiliation(s)
- Meghana N Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Archita J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manish N Nandpal
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manan A Raval
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Amit A Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Samir G Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.
| |
Collapse
|
2
|
Faye LM, Hosu MC, Vasaikar S, Dippenaar A, Oostvogels S, Warren RM, Apalata T. Spatial Distribution of Drug-Resistant Mycobacterium tuberculosis Infections in Rural Eastern Cape Province of South Africa. Pathogens 2023; 12:pathogens12030475. [PMID: 36986397 PMCID: PMC10059723 DOI: 10.3390/pathogens12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Tuberculosis (TB), an infectious airborne disease caused by Mycobacterium tuberculosis (Mtb), is a serious public health threat reported as the leading cause of morbidity and mortality worldwide. South Africa is a high-TB-burden country with TB being the highest infectious disease killer. This study investigated the distribution of Mtb mutations and spoligotypes in rural Eastern Cape Province. The Mtb isolates included were 1157 from DR-TB patients and analysed by LPA followed by spoligotyping of 441 isolates. The distribution of mutations and spoligotypes was done by spatial analysis. The rpoB gene had the highest number of mutations. The distribution of rpoB and katG mutations was more prevalent in four healthcare facilities, inhA mutations were more prevalent in three healthcare facilities, and heteroresistant isolates were more prevalent in five healthcare facilities. The Mtb was genetically diverse with Beijing more prevalent and largely distributed. Spatial analysis and mapping of gene mutations and spoligotypes revealed a better picture of distribution.
Collapse
Affiliation(s)
- Lindiwe M Faye
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| | - Mojisola C Hosu
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| | - Sandeep Vasaikar
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, BE-2000 Antwerp, Belgium
| | - Selien Oostvogels
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, BE-2000 Antwerp, Belgium
| | - Rob M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Teke Apalata
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| |
Collapse
|
3
|
Diriba G, Kebede A, Tola HH, Alemu A, Yenew B, Moga S, Addise D, Mohammed Z, Getahun M, Fantahun M, Tadesse M, Dagne B, Amare M, Assefa G, Abera D, Desta K. Utility of line probe assay in detecting drug resistance and the associated mutations in patients with extrapulmonary tuberculosis in Addis Ababa, Ethiopia. SAGE Open Med 2022; 10:20503121221098241. [PMID: 35646363 PMCID: PMC9130810 DOI: 10.1177/20503121221098241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Molecular tests allow rapid detection of Mycobacterium tuberculosis and drug resistance in a few days. Identifying the mutations in genes associated with drug resistance may contribute to the development of appropriate interventions to improve tuberculosis control. So far, there is little information in Ethiopia about the diagnostic performance of line probe assay (LPA) and the M. tuberculosis common gene mutations associated with drug resistance in extrapulmonary tuberculosis. Thus, this study aimed to assess the frequency of drug resistance-associated mutations in patients with extrapulmonary tuberculosis (EPTB) and to compare the agreement and determine the utility of the genotypic in the detection of drug resistance in Addis Ababa, Ethiopia. Methods A cross-sectional study was conducted on stored M. tuberculosis isolates. The genotypic and phenotypic drug susceptibility tests were performed using LPA and BACTEC-MGIT-960, respectively. The common mutations were noted, and the agreement and the utility of the LPA were determined using the BACTEC-MGIT-960 as a gold standard. Results Of the 151 isolates, the sensitivity and specificity of MTBDRplus in detecting isoniazid resistance were 90.9% and 100%, respectively. While for rifampicin, it was 100% and 99.3% for sensitivity and specificity, respectively. The katG S315Tl was the most common mutation observed in 85.7% of the isoniazid-resistant isolates. In the case of rifampicin, the most common mutation (61.9%) was observed at position rpoB S531L. Mutations in the gyrA promoter region were strongly associated with Levofloxacin and Moxifloxacin resistance. Conclusion Line probe assay has high test performance in detecting resistance to anti-TB drugs in EPTB isolates. The MTBDRplus test was slightly less sensitive for the detection of isoniazid resistance as compared to the detection of rifampicin. The most prevalent mutations associated with isoniazid and rifampicin resistance were observed at katG S315Tl and rpoB S531L respectively. Besides, all the fluoroquinolone-resistant cases were associated with gyrA gene. Finally, a validation study with DNA sequencing is recommended.
Collapse
Affiliation(s)
- Getu Diriba
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
- Department of Medical Laboratory
Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa,
Ethiopia
| | - Abebaw Kebede
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
- Department of Microbial, Cellular and
Molecular Biology, College of Natural and Computational Sciences, Addis Ababa
University, Addis Ababa, Ethiopia
| | | | - Ayinalem Alemu
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology,
Addis Ababa University, Addis Ababa, Ethiopia
| | - Bazezew Yenew
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | - Shewki Moga
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | | | | | | | - Mengistu Fantahun
- St. Paul’s Hospital Millennium Medical
College, Addis Ababa, Ethiopia
| | | | - Biniyam Dagne
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute,
Addis Ababa, Ethiopia
| | | | - Dessie Abera
- Department of Medical Laboratory
Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa,
Ethiopia
| | - Kassu Desta
- Department of Medical Laboratory
Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa,
Ethiopia
| |
Collapse
|
4
|
Varshney K, Anaele B, Molaei M, Frasso R, Maio V. Risk Factors for Poor Outcomes Among Patients with Extensively Drug-Resistant Tuberculosis (XDR-TB): A Scoping Review. Infect Drug Resist 2021; 14:5429-5448. [PMID: 34938089 PMCID: PMC8687707 DOI: 10.2147/idr.s339972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, there has been an upsurge in cases of drug-resistant TB, and strains of TB resistant to all forms of treatment have begun to emerge; the highest level of resistance is classified as extensively drug-resistant tuberculosis (XDR-TB). There is an urgent need to prevent poor outcomes (death/default/failed treatment) of XDR-TB, and knowing the risk factors can inform such efforts. The objective of this scoping review was to therefore identify risk factors for poor outcomes among XDR-TB patients. We searched three scientific databases, PubMed, Scopus, and ProQuest, and identified 25 articles that examined relevant risk factors. Across the included studies, the proportion of patients with poor outcomes ranged from 8.6 to 88.7%. We found that the most commonly reported risk factor for patients with XDR-TB developing poor outcomes was having a history of TB. Other risk factors were human immunodeficiency virus (HIV), a history of incarceration, low body mass, being a smoker, alcohol use, unemployment, being male, and being middle-aged. Knowledge and understanding of the risk factors associated with poor outcomes of XDR-TB can help policy makers and organizations in the process of designing and implementing effective programs.
Collapse
Affiliation(s)
- Karan Varshney
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Beverly Anaele
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Molaei
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rosemary Frasso
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vittorio Maio
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|