1
|
Luo N, Cheng A, Wang M, Chen S, Liu M, Zhu D, Wu Y, Tian B, Ou X, Huang J, Wu Z, Yin Z, Jia R. Up-regulated Lnc BTU promotes the production of duck plague virus DNA polymerase and inhibits the activation of JAK-STAT pathway to facilitate duck plague virus replication. Poult Sci 2024; 103:104238. [PMID: 39383668 PMCID: PMC11490923 DOI: 10.1016/j.psj.2024.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024] Open
Abstract
Duck plague virus (DPV) is the only herpes virus known to be transmissible among aquatic animals, leading to immunosuppression in ducks, geese and swans. Long noncoding RNAs (LncRNA) are known to participate in viral infections, acting as either immune defenders or viral targets to evade the host response, but their precise roles in waterfowl virus infections are yet to be fully understood. This study aimed to investigate the role of LncRNA in DPV-induced innate immune responses. Results showed that DPV infection greatly upregulated Lnc BTU expression in duck embryo fibroblasts (DEF) and Lnc BTU promoted DPV replication. Mechanically, 4 DPV proteins, namely UL46, UL42, VP22 and US10, interacted with Lnc BTU, leading to its upregulation. Specifically, Lnc BTU facilitated the production of DNA polymerase by enhancing UL42 expression, thereby promoting DPV replication. Additionally, Lnc BTU suppressed STAT1 expression by targeting the DNA binding domain (DBD) and promoting STAT1 degradation through the proteasome pathway. Furthermore, Lnc BTU inhibited the production of key antiviral factors such as IFN-α, IFN-β, MX and OASL during DPV infection. Treatment with 2 JAK-STAT pathway activators in DEFs resulted in the inhibition of Lnc BTU expression and DPV replication. Interestingly, DPV infection led to a decrease in STAT1 levels, which was reversed by Si-Lnc BTU. These findings suggest that DPV relies on Lnc BTU to inhibit the activation of the JAK-STAT pathway and limit the production of type 1 interferons (IFN) to complete immune evasion. Our study highlights the novel role of DPV proteins UL46, UL42, VP22, US10 as RNA-binding proteins in modulating the innate antiviral immune response, and discover the role of a new host factor, Lnc BTU, in DPV immune evasion, Lnc BTU and STAT1 can be used as a potential therapeutic target for DPV infection and immune evasion.
Collapse
Affiliation(s)
- Ning Luo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Ahmed T, Islam MS, Nuruzzaman M, Sadekuzzaman M, Kabir SML, Rahman MT, Rahman Khan MS. First identification and genomic features of multidrug-resistant Citrobacter freundii ST669 strain isolated from a domesticated duck in Bangladesh. Heliyon 2024; 10:e36828. [PMID: 39281637 PMCID: PMC11400972 DOI: 10.1016/j.heliyon.2024.e36828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Objectives Citrobacter freundii is a prevalent source of nosocomial infections and a well-known cause of diarrheal diseases. In recent years, it has also become increasingly resistant to various antimicrobials. In this study, we screened and characterized a multidrug-resistant (MDR) C. freundii isolate obtained from a domesticated diseased duck to better understand the genetic features, molecular epidemiology, and underlying factors linked to the antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) of the isolate. Methods The C. freundii BAU_TM8 strain was isolated using culturing, staining, biochemical, polymerase chain reaction, and Matrix-assisted laser desorption/ionization-time of flight methods. The MDR properties of the strain were determined by a disk diffusion test. The genomic sequence of C. freundii BAU_TM8 was performed using the Illumina NextSeq2000 platform. The ARGs, VFGs, and genomic functional characteristics of the C. freundii BAU_TM8 strain were identified using several open-source databases. Results The sequence type of this strain was ST669, and the pathogenicity index of the strain was 0.919. Moreover, the strain had an estimated genome length of 5,797,806 bp, harboring 62 contigs, a G + C content of 54.32 %, and five contig L50s with an N50 value of 443,947 bp. Using phylogenetic analysis, this strain was closely related to two strains isolated from human and environmental samples in the USA and China despite huge geographical distances. The C. freundii BAU_TM8 strain consisted of 40 AGRs encoding resistance to 19 antimicrobial categories, e.g., fluoroquinolones, macrolides, folate pathway antagonists, aminoglycosides, tetracyclines, cephalosporins, and others. According to the phenotypic assay and genome sequence, the sensitivity and specificity of resistance profiles of the strain were 100 % and 20 %, respectively. Moreover, the virulence factor database detected 66 VFGs in this strain. This strain contained 1581 subsystems, having 33 % subsystem coverage and 2275 genes encoding amino acid derivatives, carbohydrate metabolism, protein metabolism, cofactors, vitamins, prosthetic groups, pigments, respiration, motility and chemotaxis, stress response, DNA metabolism, nucleosides and nucleotides, and others. Conclusions To the best of our knowledge, this is the first WGS report of C. freundii from a domesticated duck in Bangladesh. The ubiquitous occurrence of ARGs and VFGs in the C. freundii BAU_TM8 strain detected in this study highlights the growing concern about antimicrobial resistance in humans, animals, and environments.
Collapse
Affiliation(s)
- Tarana Ahmed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Department of Livestock Services, Ministry of Fisheries & Livestock, Government of the Peoples Republic of Bangladesh, Krishi Khamar Sarak, Farmgate, Dhaka, 1215, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Mohammad Sadekuzzaman
- Central Disease Investigation Laboratory (CDIL), Department of Livestock Services, Ministry of Fisheries & Livestock, Government of the Peoples Republic of Bangladesh, Krishi Khamar Sarak, Farmgate, Dhaka, 1215, Bangladesh
| | - S M Lutful Kabir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
3
|
Duck plague virus infection alter the microbiota composition and intestinal functional activity in Muscovy ducks. Poult Sci 2022; 102:102365. [PMID: 36610104 PMCID: PMC9829712 DOI: 10.1016/j.psj.2022.102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/24/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
Intestinal damage from the duck plague virus (DPV) infection affects intestinal inflammation factors expression and barrier dysfunction. Here we report findings from the pathogenicity of the intestinal tract, intestinal morphological, intestinal permeability, inflammatory cytokines, and tight junction gene expression in 72 two-wk-old Muscovy ducks exposed to DPV. The characterization of intestinal metabolites and their classification were examined using 16-sequencing technology. The primary outcomes of the study evaluated the correlation between intestinal microbiota characteristics and the degree of infected tissue. The secondary outcomes were to determine whether the biosignatures that defined the microbiota were positively or negatively correlated with viral infection. The tissue was infected accompanied a mild damage of liver and spleen, and severe intestinal bleeding. Two inoculation routes were constructed with susceptible animals to assess the pathogenicity of the DPV in order to enrich the status of infection in Muscovy ducks. High levels of virus titer from Muscovy ducks were found being in the intestine. The expression of INF-α and IL-β with viral infection increased at 4, and 6 dpi, respectively, after detecting of the inflammatory factor and barrier function genes. At 4 and 6 dpi, barrier function gene of ZO-1 and Occludin reduced. The severity of viral infection was significantly correlated with the characteristics of the intestinal microbiota. Ducks infected with the DPV had an increase in the phylum Firmicutes, a decrease in the phylum Actinobacteriota, and differential enrichment with the genus Bacteroides, Tyzzerella, Enterococcus, and Escherchia-Shigella, while the genus Rothia, Streptococcus, and Ralstonia were differentially enriched in the control group. The findings from the current study demonstrated that DPV infection leads to an imbalance of the intestinal microbiota and disruption of the microbial homeostasis in the intestinal tissue in ducks, which might be one of the mechanisms whereby DPV infection might be established in Muscovy ducks. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activity monitoring also showed that viral infection reduced these activities. These findings imply that changes in intestinal microbiota, intestinal barrier gene expression, and inflammatory factor are related to viral infection. When taken as a whole, this work provides fresh perspectives on the characteristics of intestinal microbiota and the infection damage caused by the DPV.
Collapse
|
4
|
Wu L, Tian B, Wang M, Cheng A, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Huang J, Zhao X, Chen S, Zhang S, Ou X, Mao S, Gao Q, Sun D, Yu Y, Zhang L, Pan L. Duck Plague Virus Negatively Regulates IFN Signaling to Promote Virus Proliferation via JNK Signaling Pathway. Front Immunol 2022; 13:935454. [PMID: 35837399 PMCID: PMC9275408 DOI: 10.3389/fimmu.2022.935454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Duck plague virus (DPV), a member of the alphaherpesvirus subfamily, can cause severe damage and immunosuppression in ducks and geese in China. Since lacking an available cell model, the antiviral signal transduction pathways induction and regulation mechanisms related to DPV infection in duck cells are still enigmatic. Our previous study developed a monocyte/macrophages cell model, which has been applied to study innate immunity with DPV. In the present study, we compared and analyzed transcriptome associated with the DPV infection of CHv (virulent strain) and CHa (avirulent strain) at 48hpi based on the duck monocyte/macrophages cell model and RNA-seq technology. Differentially expressed genes (DEGs) analysis showed 2,909 and 2,438 genes altered in CHv and CHa infected cells compared with control cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly involved in biological processes such as metabolic pathways, viral infectious diseases, immune system, and signal transduction. The CHv and CHa virus differentially regulated MAPK, NF-κB, and IFN signaling pathways based on transcriptome sequencing data and RT-qPCR results. The JNK inhibitor SP600125 enhanced the IFN signaling, but potentially reduced the VSV and DPV titers in the cell culture supernatant, indicating that JNK negatively regulates the IFN pathway and the inflammatory pathway to promote virus proliferation. The research results may provide promising information to understand the pathogenesis of DPV and provide a novel mechanism by which DPV modulates antiviral signaling and facilitate virus proliferation through hijacking the JNK pathway, which provides a new means for the prevention and control of DPV infection.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Mingshu Wang,
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - LeiCHang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
5
|
Islam MM, Islam J, Islam MS, Ahamed T, Islam MR, Khatun MM, Islam MA. Duck virus enteritis (duck plague) outbreak in an Australian black swan ( Cygnus atratus) flock at safari park in Bangladesh: A case report. J Adv Vet Anim Res 2022; 8:557-562. [PMID: 35106294 PMCID: PMC8757670 DOI: 10.5455/javar.2021.h545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Duck virus enteritis is a severe viral disease that kills ducks and swans worldwide. The clinical manifestations, gross pathology, molecular detection, and characterization of the duck virus enteritis virus (DVEV) in Australian black swans at a safari park in Bangladesh were described in this case report. Materials and Methods: On a safari park in Bangladesh, an Australian black swan flock exhibited clinical signs of anorexia, greenish watery diarrhea, increased thirst, partial paralysis, and death. Postmortem examinations of deceased swans revealed extensive pathological abnormalities in the trachea, liver, and spleen. To isolate DVEV, a viral inoculum produced from the liver and spleen of dead swans was implanted into 9–13-day-old embryonated duck eggs via the chorioallantoic membrane (CAM) route. DVEV was confirmed using a polymerase chain reaction (PCR) assay. Phylogenetic analysis was used to determine the genetic relationship between the DVEV isolates from Australian black swans, and 16 DVEV isolates previously described in the GenBank. Results: Hemorrhage was noted in the annular ring of the trachea, as well as an enlarged and hemorrhagic liver and spleen. The PCR assay amplified a 446-bp fragment of the DVEV DNA polymerase gene in the liver, spleen, and CAM homogenates. The phylogenetic analysis found that the DVEV isolates from swans were comparable to those from Bangladesh, India, Vietnam, China, Germany, the USA, and Egypt. Conclusion: According to the findings of this study, the DVEV was the cause of illness and mortality in an Australian black swan flock.
Collapse
Affiliation(s)
- Md Mohirul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jahidul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Sadequl Islam
- Department of Anatomy and Histology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Tanvir Ahamed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Mst Minara Khatun
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Ariful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
6
|
Kabir MAA, Saha S, Hossain MG, Khan KA, Islam MA, Rahman L. Serological survey on the prevalence of chicken infectious anemia virus in broiler breeder and layer farms in some selected areas of Bangladesh. J Adv Vet Anim Res 2021; 8:323-329. [PMID: 34395604 PMCID: PMC8280981 DOI: 10.5455/javar.2021.h518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/10/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Chicken infectious anemia virus (CIAV) is an economically important emerging infection of poultry as it causes immunosuppression and reduces egg production. Although it is worldwide distributed and first reported (single case) in Bangladesh in 2002, no epidemiological and serological investigations have been conducted. The current study aimed to conduct a serological investigation on the prevalence of CIAV infection in broiler breeder and layer farms in some selected areas of Bangladesh. Materials and Methods: A total number of 460 sera samples were randomly collected from unvaccinated broiler breeder and layer flocks, of which 276 were from 11 broiler breeder farms and 184 from 12 layer farms. The sera samples were subjected to a commercially available enzyme-linked immunosorbent assay kit to observe antibodies induced by CIAV. Results: Results demonstrated that the overall prevalence of CIAV was 83.6% among a total of 460 samples. In broiler breeder birds, the prevalence was 89.9%, whereas it was 78.3% in layer birds. A higher number of female birds was found to be seropositive than male birds. However, chickens of all age groups were found to be susceptible to the virus. Conclusions: These results indicate the presence of CIAV in Bangladesh, which may be the sequel of naturally occurring either vertical or horizontal infection in all bird flocks tested without clinical symptoms of the disease. A further epidemiological investigation will be required, followed by molecular isolation and characterization of the virus for suitable vaccine candidate selection and/or preparation.
Collapse
Affiliation(s)
- Md Al Arif Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Kamrul Ahmed Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Alimul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Lutfor Rahman
- Poultry Care Lab, Paragon Group, Gazipur, Bangladesh
| |
Collapse
|