1
|
Ma Z, Wang Y, He H, Liu T, Jiang Q, Hou X. Advancing ophthalmic delivery of flurbiprofen via synergistic chiral resolution and ion-pairing strategies. Asian J Pharm Sci 2024; 19:100928. [PMID: 38867804 PMCID: PMC11165342 DOI: 10.1016/j.ajps.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 06/14/2024] Open
Abstract
Flurbiprofen (FB), a nonsteroidal anti-inflammatory drug, is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects. However, the racemic nature of its commercially available formulation (Ocufen®) limits the full potential of its therapeutic activity, as the (S)-enantiomer is responsible for the desired anti-inflammatory effects. Additionally, the limited corneal permeability of FB significantly restricts its bioavailability. In this study, we successfully separated the chiral isomers of FB to obtain the highly active (S)-FB. Subsequently, utilizing ion-pairing technology, we coupled (S)-FB with various counter-ions, such as sodium, diethylamine, trimethamine (TMA), and l-arginine, to enhance its ocular bioavailability. A comprehensive evaluation encompassed balanced solubility, octanol-water partition coefficient, corneal permeability, ocular pharmacokinetics, tissue distribution, and in vivo ocular anti-inflammatory activity of each chiral isomer salt. Among the various formulations, S-FBTMA exhibited superior water solubility (about 1-12 mg/ml), lipid solubility (1< lg Pow < 3) and corneal permeability. In comparison to Ocufen®, S-FBTMA demonstrated significantly higher in vivo anti-inflammatory activity and lower ocular irritability (such as conjunctival congestion and tingling). The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Zhining Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuequan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiyang He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Liu
- Liaoning Provincial Institute of Drug Inspection and Testing, Shenyang 110036, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Sonego DA, Ribeiro AP, Dower NMB, Rodrigues BE, de França Lemes SA, de Oliveira Souza A, de Lara Spada EC, Furlan FH, Lisboa DR, Rondon E Silva J. Effects of topical ketorolac tromethamine on tear parameters, meibography, goblet cell density, and conjunctival oxidative stress in healthy dogs. Vet Ophthalmol 2024; 27:214-227. [PMID: 38140703 DOI: 10.1111/vop.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES The objective of the study was to evaluate whether a twice-daily instillation of 0.45% preservative-free ketorolac tromethamine (FKT) or 0.4% benzalkonium chloride-preserved ketorolac tromethamine (BACKT), every 12 h for 30 days may affect tear film parameters and the meibography in healthy dogs. Additionally, we assessed whether the same treatments irritated the ocular surface, affected goblet cell density (GCD), and the levels of oxidative stress biomarkers (OSB) in the conjunctiva of the same dogs. PROCEDURES Experimental and masked comparison study. In 11 healthy dogs baseline values of the lipid layer thickness, tear meniscus height, non-invasive tear breakup time (NI-TFBT), and the meibomian gland (MG) loss were assessed by OSAvet®. For each dog, one eye received 40 μL of BACKT, while the other received 40 μL FKT, every 12 h for 30 consecutive days. Tear parameters and meibography were repeated 15, 30, and 60 days post-treatments. Conjunctival hyperemia and blepharospasm were monitored at the same time points. At baseline and Day 30, a conjunctival biopsy was collected for GCD and OSB determination. RESULTS Conjunctival hyperemia and blepharospasm were not observed. At Day 15, the MG loss increased only in FKT-treated eyes (p < .001). On Day 30, both treatment groups showed increased MG loss, shortened NI-TFBT, and reduced GCD and catalase (p < .05). At Day 30, BACKT-treated eyes showed lower levels of superoxide dismutase (SOD) (p = .006) and higher levels of malondialdehyde (MDA) (p = .02). Differences between treatments were not observed for any parameter at any time point (p > .05). 60 days after treatment, OSAvet® parameters tended to return to values assessed at baseline; however, significant differences remained for MG loss (p < .05). CONCLUSIONS Twice-daily instillation of KT, containing or not BAC, for 30 consecutive days shortened NI-TFBT, decreased GCD, and increased the MG loss in healthy dogs. KT should be used with caution when prescribed for long periods, particularly in patients with tear film abnormalities. However, future controlled studies using KT, BAC, and other topical NSAIDs are indicated to further support this finding.
Collapse
Affiliation(s)
- Dábila Araújo Sonego
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | | | | | - Bianca Eidt Rodrigues
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Chan K, Badanes Z, Ledbetter EC. Decreased corneal subbasal nerve fiber length and density in diabetic dogs with cataracts using in vivo confocal microscopy. Vet Ophthalmol 2023; 26:524-531. [PMID: 36854901 DOI: 10.1111/vop.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To determine whether there is a difference in corneal sensitivity and corneal subbasal nerve plexus (CSNP) morphology in cataractous dogs with diabetes mellitus (DM) versus without DM. ANIMALS STUDIED Twenty six domestic dogs with cataracts of various breeds presented for phacoemulsification, 13 with DM and 13 without DM. PROCEDURE The inclusion criteria for the study were dogs with bilateral cataracts and no clinical evidence of corneal disease. The diabetic group had documented hyperglycemia and was currently treated with insulin. The non-diabetic group had no evidence of DM on examination and bloodwork. Complete ophthalmic examination, corneal esthesiometry, and in vivo confocal microscopy of the CSNP was performed for both eyes of each dog. The CSNP was evaluated using a semi-automated program and statistically analyzed. RESULTS The mean (±SD) CSNP fiber length was significantly decreased in diabetic (3.8 ± 3.0 mm/mm2 ) versus non-diabetic (6.7 ± 1.9 mm/mm2 ) dogs. Likewise, the mean (±SD) fiber density was significantly decreased in diabetic (8.3 ± 3.1 fibers/mm2 ) versus non-diabetic (15.5 ± 4.9 fibers/mm2 ) dogs. The corneal touch threshold was significantly reduced in diabetic (2.1 ± 0.8 cm) versus non-diabetic (2.8 ± 0.4 cm) dogs. There was a non-significant trend towards subclinical keratitis in diabetic (9/13) versus non-diabetic (4/13) dogs. CONCLUSIONS Morphological and functional abnormalities of the CSNP were present in dogs with DM, including decreased fiber length, fiber density, and corneal sensitivity. These findings are consistent with diabetic neuropathy and could contribute to clinically significant corneal complications after cataract surgery.
Collapse
Affiliation(s)
- Kore Chan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zachary Badanes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Eric C Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Pinard CL. Diagnostic Tests Used During the Ocular Examination. Vet Clin North Am Small Anim Pract 2023; 53:279-298. [PMID: 36813386 DOI: 10.1016/j.cvsm.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This article provides a review of the required ocular tests during the ophthalmologic examinations of canine and feline patients. Knowledge of medications affecting ocular parameters and awareness of available instrumentation and test materials is essential for accurate diagnoses.
Collapse
Affiliation(s)
- Chantale L Pinard
- Department of Clinical Studies, University of Guelph, Ontario Veterinary College, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
5
|
Huang W, Huang L, Li W, Saglam MS, Tourmouzis K, Goldstein SM, Master A, Honkanen R, Rigas B. Once-Daily Topical Phosphosulindac Is Efficacious in the Treatment of Dry Eye Disease: Studies in Rabbit Models of Its Main Clinical Subtypes. J Ocul Pharmacol Ther 2021; 38:102-113. [PMID: 34964663 PMCID: PMC8817715 DOI: 10.1089/jop.2021.0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: Dry eye disease (DED) is classified as aqueous deficient, evaporative, or mixed. We investigated the therapeutic effect of the novel anti-inflammatory drug phosphosulindac (PS) in rabbit models of DED encompassing its pathogenesis, and its transition to chronicity. Methods: We treated three rabbit models of DED with PS (hydrogel formulation) or vehicle topically applied 1 × /day. We induced aqueous-deficient DED (acute and chronic) by injecting Concanavalin A into lacrimal glands; evaporative DED by injecting into the upper eyelid inactivated Mycobacterium tuberculosis in complete Freund's adjuvant; and mixed DED through desiccative stress, induced by holding open the eye for 3 h. We determined corneal sensitivity, tear break-up time (TBUT), Schirmer's tear test (STT), tear osmolality, and fluorescein staining of the ocular surface. Results: PS reversed all abnormal DED parameters. In acute DED, PS dose dependently normalized corneal sensitivity and tear osmolality; and improved TBUT, STT, and fluorescein staining. PS normalized corneal sensitivity and improved all other parameters in chronic aqueous-deficient DED. In evaporative DED, PS normalized corneal sensitivity and improved TBUT and fluorescein staining (osmolality and STT were not significantly changed in this model). In the desiccative stress model, PS improved TBUT and fluorescein staining but had no effect on STT or tear osmolality. Conclusions: PS rapidly reversed almost all DED parameters in its three subtypes. The normalization of the suppressed corneal sensitivity suggests the possibility of marked symptomatic relief by PS. The hydrogel formulation allows once-daily dosing. PS merits further development as a potential treatment for DED.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology and Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA.,Department of Ophthalmology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liqun Huang
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Wenyi Li
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - M Sait Saglam
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | | | - Adam Master
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Robert Honkanen
- Department of Ophthalmology and Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Basil Rigas
- Department of Family, Population, Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Huang W, Wen Z, Saglam MS, Huang L, Honkanen RA, Rigas B. Phospho-Sulindac (OXT-328) Inhibits Dry Eye Disease in Rabbits: A Dose-, Formulation- and Structure-Dependent Effect. J Ocul Pharmacol Ther 2021; 37:321-330. [PMID: 34152861 DOI: 10.1089/jop.2019.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose: Inflammation of the ocular surface is central to dry eye disease (DED). The anti-inflammatory agent phospho-sulindac (PS) at a high dose was efficacious against DED in a rabbit model. We assessed the dose, formulation and structure dependence of PS's effect. Methods: In rabbits with concanavalin A-induced DED we evaluated a range of PS concentrations (0.05%-1.6%) and dosing frequencies, assessed the duration of its effect with PS in 2 solution formulations and one emulsion formulation, and compared the efficacy of PS to that of sulindac, and of the structurally similar phospho-ibuprofen amide. We determined tear breakup time (TBUT) (tear stability), Schirmer's tear test (tear production), and by esthesiometry corneal sensitivity (symptoms). We also determined the biodistribution in the eye of topically applied PS. Results: PS in a solution formulation, given as eye drops q.i.d. was efficacious starting at a dose of 0.1%. The effect was apparent after 2 days of treatment and lasted at least 8 days after the last dose. Both signs (evidenced by TBUT and Schirmer's test) and symptoms (measured by corneal sensitivity) improved significantly. The best formulation was the solution formulation; a cyclodextrin-based formulation was also successful but the emulsion formulation was not. PS and its metabolites were essentially restricted to the anterior chamber of the eye. Sulindac and phospho-ibuprofen amide had no efficacy on DED. Conclusions: PS is efficacious against DED. Its effect, encompassing signs, and symptoms, are dose, formulation, and structure dependent. PS has therapeutic promise and merits further development.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, Stony Brook University, Stony Brook, New York, USA.,Department of Medicine, Stony Brook University, Stony Brook, New York, USA.,Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyi Wen
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Muhammet S Saglam
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Liqun Huang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA.,Medicon Pharmaceuticals, Setauket, New York, USA
| | - Robert A Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, New York, USA
| | - Basil Rigas
- Department of Preventive Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Roberts JK, Meekins JM, Roush JK, Rankin AJ. Effects of topical instillation of 0.1% diclofenac sodium, 0.5% ketorolac tromethamine, and 0.03% flurbiprofen sodium on corneal sensitivity in ophthalmologically normal cats. Am J Vet Res 2020; 82:81-87. [PMID: 33369491 DOI: 10.2460/ajvr.82.1.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of short-term and prolonged topical instillation of 0.1% diclofenac sodium, 0.5% ketorolac tromethamine, and 0.03% flurbiprofen sodium on corneal sensitivity (CS) in ophthalmologically normal cats. ANIMALS 12 healthy adult domestic shorthair cats. PROCEDURES In the first of 2 study phases, each cat received 0.1% diclofenac sodium, 0.5% ketorolac tromethamine, 0.03% flurbiprofen sodium, and saline (0.9% NaCl; control) solutions (1 drop [0.05 mL]/eye, q 5 min for 5 treatments) in a randomized order with a 2-day washout period between treatments. For each cat, an esthesiometer was used to measure CS before treatment initiation (baseline) and at 15, 30, 45, and 60 minutes after the last dose. There was a 2-day washout period between phases. The second phase was similar to the first, except each treatment was administered at a dosage of 1 drop/eye, twice daily for 5 days and CS was measured before treatment initiation and at 15 minutes and 24 and 48 hours after the last dose. The Friedman test was used to evaluate change in CS over time. RESULTS None of the 4 treatments had a significant effect on CS over time in either study phase. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that neither short-term nor prolonged topical instillation of 3 NSAID ophthalmic solutions had any effect on the CS of healthy cats. Given potential differences in cyclooxygenase expression between healthy and diseased eyes, further investigation of the effects of topical NSAID instillation in the eyes of cats with ocular surface inflammation is warranted.
Collapse
|
8
|
Mirković I, Kralj T, Lozić M, Stambolija V, Kovačević J, Vrdoljak L, Zlatar M, Milanović K, Drmić D, Predović J, Masnec S, Jurjević M, Bušić M, Seiwerth S, Kokot A, Sikirić P. Pentadecapeptide BPC 157 shortens duration of tetracaine- and oxybuprocaine-induced corneal anesthesia in rats. Acta Clin Croat 2020; 59:394-406. [PMID: 34177048 PMCID: PMC8212645 DOI: 10.20471/acc.2020.59.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We focused on the relationship of 0.5% tetracaine- and 0.4% oxybuprocaine-induced corneal anesthesia in rats, and pentadecapeptide BPC 157 (0.4 µg/eye), along with nitric oxide synthase (NOS) inhibitor N(gamma)-nitro-L-arginine methyl ester (L-NAME) (0.1 mg/eye) and/or NOS substrate L-arginine (2 mg/eye), applied in the form of eye drops. We assessed corneal sensitivity recovery (Cochet-Bonnet esthesiometer), corneal lesion elimination (staining with 10% fluorescein) and decrease in tear volume (Schirmer test). BPC 157 administration had a full counteracting effect. Recovery also occurred in the presence of NOS blockade and NOS substrate application. L-arginine eventually shortened duration of corneal insensitivity and exerted corneal lesion counteraction (and counteraction of tetracaine-induced decrease of tear volume) only in earlier but not in later period. L-NAME application led to longer duration of corneal insensitivity, increase in corneal lesions and decrease in tear volume. When L-NAME and L-arginine were applied together, they antagonized each other’s effect. These distinctions may indicate particular NOS involvement (corneal insensitivity vs. corneal lesion along with tear production), distinctively affected by the administration of NO agents. However, additional BPC 157 co-administration would re-establish counteraction over topical ophthalmic anesthetic-induced effect, be it in its early or late course. We suggest BPC 157 as an antidote to topical ophthalmic anesthetics.
Collapse
Affiliation(s)
| | - Tamara Kralj
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Marin Lozić
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Vasilije Stambolija
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Josip Kovačević
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Luka Vrdoljak
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Mirna Zlatar
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Kristina Milanović
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Domagoj Drmić
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Jurica Predović
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Sanja Masnec
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Matija Jurjević
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Mladen Bušić
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Sven Seiwerth
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Antonio Kokot
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| | - Predrag Sikirić
- 1Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Anatomy and Neuroscience, Osijek Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 3Department of Ophthalmology, Sveti Duh University Hospital, Zagreb, Croatia; 4Department of Ophthalmology, Zagreb University Hospital Centre, Zagreb, Croatia
| |
Collapse
|
9
|
Robin MC, Papin A, Regnier A, Douet JY. Corneal anesthesia associated with topical application of 2% lidocaine nonophthalmic gel to healthy canine eyes. Vet Ophthalmol 2020; 23:560-566. [PMID: 32267080 DOI: 10.1111/vop.12757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess the degree and duration of corneal anesthesia induced by topical application of 2% lidocaine gel to the healthy canine eye. ANIMALS Nineteen adult Beagles free of ocular abnormalities. PROCEDURES Baseline corneal touch threshold (CTT) was measured bilaterally with a Cochet-Bonnet aesthesiometer. The 2% lidocaine gel (0.1 mL) was applied to one eye, randomly assigned, and the same volume of a lubricant gel was applied to the opposite eye. The CTT measurements were repeated bilaterally within 1 minute, after drug application, and every 5 minutes, until the baseline corneal sensitivity was restored. The potential for local adverse effects was evaluated. RESULTS Complete desensitization of the cornea (CTT = 0) was achieved one minute after lidocaine gel application and was maintained during 25.3 ± 12.5 minutes. Overall, the corneal sensitivity was significantly decreased for 58.4 ± 16.6 minutes compared with baseline level. Minor and reversible punctate epithelial erosions of the cornea were observed in the two treatment groups and were attributed to the anesthetic effect and the aesthesiometry procedure. CONCLUSIONS In the current study, the 2% lidocaine gel provided a sustained, deep and well-tolerated corneal anesthesia in ophthalmically normal dogs.
Collapse
Affiliation(s)
| | - Aurélie Papin
- Small Animal Clinic, Université de Toulouse, ENVT, Toulouse, France
| | - Alain Regnier
- Small Animal Clinic, Université de Toulouse, ENVT, Toulouse, France
| | - Jean-Yves Douet
- Small Animal Clinic, Université de Toulouse, ENVT, Toulouse, France.,IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|