1
|
Mattingly A, Vickery Z, Ivankovic D, Farrell CL, Hakonarson H, Nguyen K, Boccuto L. Exploring the Therapeutic Potential for Breast Cancer of Phytochemicals and Secondary Metabolites in Marjoram, Thyme, and Persimmon. Metabolites 2024; 14:652. [PMID: 39728433 DOI: 10.3390/metabo14120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Breast cancer is the most common cause of death in women worldwide and the most commonly diagnosed cancer. Although several therapeutic approaches are widely used against breast cancer, their adverse effects often lead to symptoms severely affecting the quality of life. Alternative methods have been explored to reduce these adverse effects, and nutraceuticals have yielded promising results. This review will discuss mechanisms of action and potential applications against breast cancer of some nutraceuticals, specifically marjoram, thyme, and persimmon leaves. Methods: A systematic search was conducted across the public databases of PubMed, PubChem, and Google Scholar, with a specific focus on the plant extracts and phytochemicals of interest, as well as the anticarcinogenic mechanisms. Results: Ethnopharmacological and biochemical evidence support the anticarcinogenic role of marjoram, thyme, and persimmon. Numerous phytochemicals contained in these herbs' extracts, like terpenes and flavonoids, possess remarkable potential to effectively treat breast cancer. Discussion: The phytochemicals contained in the reviewed nutraceuticals target the main cellular pathways involved in cell growth and disrupted in carcinogenesis, such as Nf-κB, MAPK/p38, TNF-α/IL-1β, and PI3K/Akt. The mechanisms of action of these compounds can successfully limit the abnormal growth and proliferation of cancerous breast cells. Conclusions: The potential use of the phytochemicals discussed in this review, either alone or in combination, may offer a valid alternative to chemotherapy against breast cancer with virtually no adverse effects, and further research on these molecules may lead to the identification of additional chemo-preventative and chemotherapeutic candidates.
Collapse
Affiliation(s)
- Aubrey Mattingly
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Zoe Vickery
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Diana Ivankovic
- Center for Cancer Research, Anderson University, Anderson, SC 29621, USA
| | - Christopher L Farrell
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katie Nguyen
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Singh S, Mishra A. Linalool: Therapeutic Indication And Their Multifaceted Biomedical Applications. Drug Res (Stuttg) 2024; 74:255-268. [PMID: 38968949 DOI: 10.1055/a-2321-9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| |
Collapse
|
3
|
Jahanafrooz Z, Mousavi MMH, Akbarzadeh S, Hemmatzadeh M, Maggi F, Morshedloo MR. Anti-breast cancer activity of the essential oil from grapefruit mint (Mentha suaveolens × piperita). Fitoterapia 2024; 174:105875. [PMID: 38417678 DOI: 10.1016/j.fitote.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 μg/ml in MCF-7 and 5.9 μg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran.
| | | | - Soghra Akbarzadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Maedeh Hemmatzadeh
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP) research center, University of Camerino, 62032 Camerino, Italy.
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
4
|
Aziz M, Ejaz SA, Tamam N, Siddique F. A comprehensive computational approach for the identification of structure-based potential pharmacological candidates as selective AKR1B1 and AKR1B10 inhibitors: repurposing of purine alkaloids for the treatment of cancer. J Biomol Struct Dyn 2023; 41:7892-7912. [PMID: 36214620 DOI: 10.1080/07391102.2022.2127906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/16/2022] [Indexed: 10/17/2022]
Abstract
Significant metabolic pathways have been linked to AKR1B1 and AKR1B10. These enzymes are crucial biological targets in the therapy of colon cancer. In the past several decades, drug repurposing has gained appeal as a time and cost-efficient strategy for providing new indications for existing drugs. The structural properties of the plant-based alkaloidal drugs theobromine and theophylline were examined using density functional theory (DFT) computations, where the B3LYP/SVP method was used to quantify the dipole moment, polarizability, and optimization energy. Optimized structures obtained through DFT studies were docked inside the active pocket of target proteins to evaluate their inhibitory potential. Moreover, molecular dynamic simulation provides significant insight into a dynamic view of molecular interactions. The findings of current revealed theobromine and theophylline as strong AKR1B1 and AKR1B10 inhibitors, respectively. In addition, the anti-cancer potential of theophylline and theobromine was validated by targeting various tumor proteins, i.e. NF-κB, cellular tumor antigen P53 and caspase-3 using a molecular docking approach. Theobromine was found to be strongly interacted with NF-κB and caspase-3, whereas theophylline potentially inhibited cellular tumor antigen P53. In addition, the ADMET characteristics of theobromine and theophylline were identified, confirming their drug-like capabilities. These results should open the way for further experimental validation and structure-based drug design/repurposing of AKR1B1/AKR1B10 inhibitors for the treatment of colon cancer and associated malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan, Pakistan
| |
Collapse
|
5
|
Ray A, Gadnayak A, Jena S, Sahoo A, Patnaik J, Chandra Panda P, Nayak S. Hedychium spicatum rhizome essential oil induces apoptosis in human prostate adenocarcinoma PC-3 cells via mitochondrial stress and caspase activation. Heliyon 2023; 9:e13807. [PMID: 36873474 PMCID: PMC9981923 DOI: 10.1016/j.heliyon.2023.e13807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Hedychium spicatum is an essential oil bearing plant extensively used in the traditional system of medicine in several countries. Previous research has revealed H. spicatum essential oil (HSEO) to exhibit anti-tumor activity, although the mechanism of action is still unknown. Therefore, the current study was designed to carry out a comprehensive characterization of HSEO and evaluate the chemotherapeutic potential of HSEO against cancerous cells. The volatile constituents of HSEO was determined by one-dimensional gas chromatography with time-of-flight mass spectrometry (GC-TOFMS) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS). In total, 193 phytocompounds could be detected, out of which 140 were identified for the first time. The major phytoconstituents detected by GCxGC-TOFMS were β-pinene (10.94%), eucalyptol (6.45%), sabinene (5.48%) and trans-isolimonene (5.00%). GCxGC-TOFMS analysis showed two and half fold increase in the constituents over GC-TOFMS due to better chromatographic separation of constituents in the 2nd dimensional column. HSEO was tested for in vitro cytotoxic activity against cancerous (PC-3, HCT-116 and A-549) and normal (3T3-L1) cell, with HSEO being most selective for prostate cancer cell (PC-3) over non-tumorigenic fibroblast (3T3-L1) cell. HSEO treatment inhibited the colony formation ability of PC-3 cells. HSEO treatment caused apoptotic cell death and cell cycle arrest at G2/M and S phase in PC-3 cells. HSEO induced apoptosis via intracellular ROS accumulation, mitochondria depolarization and increased caspase-3, 8, and 9 levels in PC-3 cells. Additionally, HSEO treatment led to a decrease of Bcl-2 and Bcl-xL and increase of Bax and Bak protein levels. Overall, results from this study highlighted the anticancer potential of H. spicatum essential oil, which could be considered as a new agent for treating prostate cancer.
Collapse
Affiliation(s)
- Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ayushman Gadnayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jeetendranath Patnaik
- Department of Botany, Sri Krushna Chandra Gajapati College, Paralakhemundi, Odisha, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Fabrication and bacterial inhibitory activity of essential oil linalool loaded biocapsules against Escherichia coli. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Maleš I, Dragović-Uzelac V, Jerković I, Zorić Z, Pedisić S, Repajić M, Garofulić IE, Dobrinčić A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants (Basel) 2022; 11:antiox11061140. [PMID: 35740037 PMCID: PMC9220411 DOI: 10.3390/antiox11061140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Functional beverages based on herbal extracts are highly demanded products due to the presence of bioactives with promising health benefits and interesting and characteristic sensory properties. Mediterranean medicinal and aromatic herbs contain a wide range of bioactives (non-volatile polyphenols, volatile terpenes) that are important constituents of herbal extracts and essential oils. The antioxidant capacity and potential health benefits of these bioactives could be associated with their synergistic effects. Therefore, this study aimed to characterize the non-volatile and volatile bioactives of sage (Salvia officinalis L.), wild thyme (Thymus serpyllum L.) and laurel (Laurus nobilis L.) aqueous extracts and their two- and three-component mixtures as well as their antioxidant capacity. The content of total phenols, flavonoids, hydroxycinnamic acids and flavonols was determined spectrophotometrically. Individual polyphenols were analyzed by LC-MS/MS, the volatiles were analyzed by HS-SPME/GC-MS, and the antioxidant capacity was analyzed by ORAC and DPPH assays. The results showed that aqueous extracts of all examined herbs and their mixtures contained a high content of phenolic compounds ranging from 0.97 to 2.79 g L-1 of the sample, among which the most common were flavonols. At the same time, mono- and sesquiterpenes were the main volatiles. All extracts showed high antioxidant capacity, especially L. nobilis (781.62 ± 5.19 μmol TE mL-1 of the sample in the DPPH assay; 1896.10 ± 8.77 μmol TE mL-1 of the sample in the ORAC assay) and the two-component mixture of L. nobilis and T. serpyllum (679.12 ± 5.19 μmol TE mL-1 in the DPPH assay; 1913.38 ± 8.77 μmol TE mL-1 in the ORAC assay). Mixtures of herbal extracts have been shown to possess additive or synergistic effects, consequently contributing to higher antioxidant capacity. Therefore, two-component mixtures of herbal extracts showed promising potential for the production of functional beverages.
Collapse
Affiliation(s)
- Ivanka Maleš
- Department of Pharmacy, The School of Medicine, University of Split, 21000 Split, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
- Correspondence: (V.D.-U.); (A.D.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
- Correspondence: (V.D.-U.); (A.D.)
| |
Collapse
|
8
|
Cheng KK, Nadri MH, Othman NZ, Rashid SNAA, Lim YC, Leong HY. Phytochemistry, Bioactivities and Traditional Uses of Michelia × alba. Molecules 2022; 27:molecules27113450. [PMID: 35684387 PMCID: PMC9182571 DOI: 10.3390/molecules27113450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Michelia × alba (M. alba) is a flowering tree best known for its essential oil, which has long been used as a fragrance ingredient for perfume and cosmetics. In addition, the plant has been used in traditional medicine in Asia and dates back hundreds of years. To date, there is a limited number of publications on the bioactivities of M. alba, which focused on its tyrosinase inhibition, antimicrobial, antidiabetic, anti-inflammatory, and antioxidant activities. Nevertheless, M. alba may have additional unexplored bioactivities associated with its bioactive compounds such as linalool (72.8% in flower oil and 80.1% in leaf oil), α-terpineol (6.04% flower oil), phenylethyl alcohol (2.58% flower oil), β-pinene (2.39% flower oil), and geraniol (1.23% flower oil). Notably, these compounds have previously been reported to exhibit therapeutic activities such as anti-cancer, anti-inflammation, anti-depression, anti-ulcer, anti-hypertriglyceridemia, and anti-hypertensive activities. In this review paper, we examine and discuss the scientific evidence on the phytochemistry, bioactivities, and traditional uses of M. alba. Here, we report a total of 168 M. alba biological compounds and highlight the therapeutic potential of its key bioactive compounds. This review may provide insights into the therapeutic potential of M. alba and its biologically active components for the prevention and treatment of diseases and management of human health and wellness.
Collapse
Affiliation(s)
- Kian-Kai Cheng
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Muhammad Helmi Nadri
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Nor Zalina Othman
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Siti Nor Azlina Abd Rashid
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Ying-Chin Lim
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Hong-Yeng Leong
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
- Correspondence:
| |
Collapse
|
9
|
Van HT, Thang TD, Luu TN, Doan VD. An overview of the chemical composition and biological activities of essential oils from Alpinia genus (Zingiberaceae). RSC Adv 2021; 11:37767-37783. [PMID: 35498079 PMCID: PMC9044187 DOI: 10.1039/d1ra07370b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Alpinia Roxb. is the largest genus of the Zingiberaceae family. A large number of Alpinia species has been used as food and traditional medicines. Alpinia essential oils have been studied for their chemical profiles, in which 1,8-cineole, β-pinene, α-pinene, β-myrcene, camphor, γ-terpinene, p-cymene, geraniol, α-fenchyl acetate, ocimene, methyl cinnamate, and β-caryophyllene have been found to be the major compounds. Essential oils isolated from Alpinia plants have been reported to have antimicrobial, cytotoxic, antioxidant, anti-inflammatory, anti-asthmatic, tyrosinase inhibitory, insecticidal, and larvicidal activities and slimming aromatherapy. In this review, the comprehensive information regarding the volatile components of various Alpinia plants, the bioactivities of Alpinia essential oils and their major compounds are provided.
Collapse
Affiliation(s)
- Hong Thien Van
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Tran Dinh Thang
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Thao Nguyen Luu
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Khakdan F, Govahi M, Mohebi Z, Ranjbar M. Water deficit stress responses of monoterpenes and sesquiterpenes in different Iranian cultivars of basil. PHYSIOLOGIA PLANTARUM 2021; 173:896-910. [PMID: 34161632 DOI: 10.1111/ppl.13485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/28/2021] [Indexed: 05/24/2023]
Abstract
Ocimum basilicum, a popular aromatic plant, contains aromatic terpenes of terpenoids with in vivo and in vitro verified cytotoxicity. Considering the characteristics and potential of its utilization, it would be attractive to reveal its regulation and biosynthesis, originally at the molecular level under water deficit stress. For this aim, for the first time, the gene encoding the enzyme involved in the end step of the MEP biosynthetic pathways (HDR) was cloned, and the accumulation ratio of linalool, germacrene D and γ-cadinene compounds as well as the expression trait of four critical genes (i.e., HDR, LinS, GerS, and GadS) was assessed under water deficit stress in three Iranian cultivars of basil. The highest value of linalool and γ-cadinene were detected for Cultivar 1 (Cult. 1) under mild stress (W1; 52.6 and 21.1%), while insignificant amounts were obtained for Cultivar 3 (Cult. 3). The germacrene D level of Cultivar 2 (Cult. 2) increased under severe and moderate water stresses as compared with mild water deficit stress. Apart from some expectation, all the studied genes demonstrated divergent transcription ratios under water deficit stress. Principal component analyses (PCA) showed that the relative water content (RWC) and HDR gene expression correlated significantly with essential oil components and gene expression in Cult. 1 and 2, which could represent an elevated demand for corresponding metabolites in the plant tissues. The present work elaborates on the regulation of the mentioned genes, and the results indicate that the production of terpenoids might be a drought stress-dependent and cultivar-dependent procedure.
Collapse
Affiliation(s)
| | - Mostafa Govahi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Zahra Mohebi
- Department of Natural Resources, Faculty of Agricultural Sciences & Natural Resources, Razi University, Kermanshah, Iran
| | - Mojtaba Ranjbar
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
11
|
Jain D, Murti Y, Khan WU, Hossain R, Hossain MN, Agrawal KK, Ashraf RA, Islam MT, Janmeda P, Taheri Y, Alshehri MM, Daştan SD, Yeskaliyeva B, Kipchakbayeva A, Sharifi-Rad J, Cho WC. Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Wasi Ullah Khan
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops Hainan University, Haikou, China
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Mohammad Nabil Hossain
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | | | - Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, China
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
12
|
Barati N, Tafrihi M, A Najafi SM. Membrane Localization of β-Catenin in Prostate Cancer PC3 Cells Treated with Teucrium persicum Boiss. Extract. Nutr Cancer 2021; 74:1819-1828. [PMID: 34343037 DOI: 10.1080/01635581.2021.1961829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Teucrium persicum Boiss. is an Iranian endemic plant which belongs to the Lamiaceae family and has been used to relieve pains in traditional Iranian medicine. We have previously found that treatment of prostate cancer PC3 cells with Teucrium persicum extract leads to the formation of small populations of epithelial cells. β-Catenin is a component of cell adherens junctions in epithelial cells and therefore, in this study, we have investigated the effect of Teucrium persicum extract on expression, cellular localization, and transcriptional activity of β-Catenin protein in PC-3 cells. Indirect immunofluorescence microscopy results showed that the cells treated with T. persicum extract had higher levels of β-Catenin protein at the cell membrane. Western blotting experiments produced consistent results. Gene expression studies by using a few β-Catenin-target genes including c-MYC, CYCLIN D1, and a reporter Luciferase gene under the control of several β-Catenin/TCF binding elements showed that treatment of PC3 cells with the methanolic extract of T. persicum decreases the transcriptional activities of β-Catenin. The results of this study provide further support for the anticancer properties of T. persicum. Definitely, more detailed molecular investigations are needed to find the mechanism(s) behind these effects. Highlightsβ-Catenin protein is a main component of Wnt signaling pathway and adherens junction.Activation of Wnt signaling pathway affects translocation of β-Catenin.Teucrium persicum extract induces β-Catenin localization at cell membrane.Teucrium persicum affects the transcriptional activity of β-Catenin.It stabilizes E-cadherin/β-Catenin protein complex and adherens junction.
Collapse
Affiliation(s)
- Narges Barati
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Sahoo S, Subban K, Chelliah J. Diversity of Marine Macro-Algicolous Endophytic Fungi and Cytotoxic Potential of Biscogniauxia petrensis Metabolites Against Cancer Cell Lines. Front Microbiol 2021; 12:650177. [PMID: 34194402 PMCID: PMC8236939 DOI: 10.3389/fmicb.2021.650177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Hypersaline environments are known to support diverse fungal species from various orders. The production of secondary metabolites is one of the strategies that fungi adopt to thrive under such extreme environments, bringing up the stress tolerance response. Some such unique secondary metabolites also exhibit clinical significance. The increasing prevalence of drug resistance in cancer therapy demands further exploration of these novel bioactive compounds as cancer therapeutics. In the present study, a total of 31 endophytic fungi harboring inside red, green, and brown marine algae have been isolated and identified. The maximum likelihood analysis and diversity indices of fungal endophytes revealed the phylogenetic relationship and species richness. The genus Aspergillus was found to be the dominating fungus, followed by Cladosporium spp. All the isolated endophytic fungal extracts were tested for their cytotoxicity against HeLa and A431 cancer cell lines. Nine isolates were further analyzed for their cytotoxic activity from the culture filtrate and mycelia extract. Among these isolates, Biscogniauxia petrensis showed potential cytotoxicity with CC50 values of 18.04 and 24.85 μg/ml against HeLa and A431 cells, respectively. Furthermore, the media and solvent extraction optimization revealed the highest cytotoxic active compounds in ethyl acetate extract from the potato dextrose yeast extract broth medium. The compound-induced cell death via apoptosis was 50-60 and 45% when assayed using propidium iodide-live/dead and loss of mitochondrial membrane potential assay, respectively, in HeLa cells. Four bioactive fractions (bioassay-based) were obtained and analyzed using chromatography and spectroscopy. This study reports, for the first time, the cytotoxic activity of an endophytic fungal community that was isolated from marine macro-algae in the Rameswaram coastal region of Tamil Nadu, India. In addition, B. petrensis is a prominent apoptotic agent, which can be used in pharmaceutical applications as a therapeutic.
Collapse
|
14
|
Acevedo-Quiroz M, Mora-Candelario O, Leyva-Vázquez M, Mendoza-Catalán M, Álvarez L, Antunez-Mojica M, Ortiz-Ortiz J. Gas chromatography coupled with mass analysis phytochemical profiling, antiproliferative and antimigratory effect of tagetes lucida leaves extracts on cervical cancer cell lines. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_49_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Rodenak-Kladniew B, Castro MA, Crespo R, Galle M, García de Bravo M. Anti-cancer mechanisms of linalool and 1,8-cineole in non-small cell lung cancer A549 cells. Heliyon 2020; 6:e05639. [PMID: 33367122 PMCID: PMC7749389 DOI: 10.1016/j.heliyon.2020.e05639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Linalool and 1,8-cineole are plant-derived isoprenoids with anticancer activities in lung cancer cells, nevertheless, the cellular and molecular mechanisms of action remain poorly understood. The purpose of this study was to determine the anticancer mechanisms of action of linalool and 1,8-cineole in lung adenocarcinoma A549 cells. Linalool (0-2.0 mM) and 1,8-cineole (0-8.0 mM) inhibited cell proliferation by inducing G0/G1 and/or G2/M cell cycle arrest without affecting cell viability of normal lung WI-38 cells. None of the two monoterpenes were able to induce apoptosis, as observed by the lack of caspase-3 and caspase-9 activation, PARP cleavage, and DNA fragmentation. Linalool, but not 1,8-cineole, increased reactive oxygen species production and mitochondrial membrane potential depolarization. Reactive oxygen species were involved in cell growth inhibition and mitochondrial depolarization induced by linalool since the antioxidant N-acetyl-L-cysteine prevented both effects. Besides, linalool (2.0 mM) and 1,8-cineole (8.0 mM) inhibited A549 cell migration. The combination of each monoterpene with simvastatin increased the G0/G1 cell cycle arrest and sensitized cells to apoptosis compared with simvastatin alone. Our results showed that both monoterpenes might be promising anticancer agents with antiproliferative, anti-metastatic, and sensitizer properties for lung cancer therapy.
Collapse
Affiliation(s)
- Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata La Plata, Argentina
- Cátedra de Biología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Agustina Castro
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata La Plata, Argentina
| | - Rosana Crespo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Marianela Galle
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata La Plata, Argentina
- Cátedra de Biología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Margarita García de Bravo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata La Plata, Argentina
| |
Collapse
|
16
|
Jabir M, Sahib UI, Taqi Z, Taha A, Sulaiman G, Albukhaty S, Al-Shammari A, Alwahibi M, Soliman D, Dewir YH, Rizwana H. Linalool-Loaded Glutathione-Modified Gold Nanoparticles Conjugated with CALNN Peptide as Apoptosis Inducer and NF-κB Translocation Inhibitor in SKOV-3 Cell Line. Int J Nanomedicine 2020; 15:9025-9047. [PMID: 33235450 PMCID: PMC7680166 DOI: 10.2147/ijn.s276714] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022] Open
Abstract
Background Linalool is a monoterpene compound with various potential therapeutic applications in several medical fields. Previous studies have indicated the activity of linalool against cell lines; however, its high level of toxicity restricts its use. The aim of this study was to design and manufacture compounds with a novel structure that can be used for loading linalool, to reduce its toxicity and improve its reachable ability. Methods We synthesized and characterized a new molecule for loading linalool onto gold nanoparticles (GNPs) capped with glutathione and conjugated with a CALNN peptide. Linalool was loaded onto the GNPs via the reaction of the surface groups of both linalool and the GNPs. Moreover, the target peptide could be loaded onto the surface of the GNPs via a chemical reaction. The cytotoxic effects of linalool–GNP (LG) and linalool–GNP–CALNN peptide (LGC) conjugates against ovarian cancer cells were investigated, as were the possible mechanisms underlying the induction of apoptosis. Results Our findings illustrated the significant antiproliferative effect of LG and LGC on SKOV-3 cells. The cytotoxicity assay demonstrated that LG and LGC were selectively toxic in cancer cells and induced apoptosis by activating caspase-8, the p53 protein, and various proteins involved in apoptosis. The present data demonstrated that LG and LGC have a high therapeutic potential and should be given particular consideration as anticancer drug-delivery systems, as LG and LGC were remarkably more cytotoxic against a cancer cell line than were linalool and GNPs alone. Conclusion We concluded that LG and LGC are promising compounds that can be used for treating ovarian cancer (SKOV-3) cells via the induction of apoptosis through extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Majid Jabir
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Usama I Sahib
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Zainab Taqi
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Ali Taha
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Ghassan Sulaiman
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Salim Albukhaty
- University of Misan, Department of Basic Science, Misan, Iraq
| | - Ahmed Al-Shammari
- Al-Mustansiriyah University, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - Mona Alwahibi
- King Saud University, Department of Botany and Microbiology, Riyadh 11495, Saudi Arabia
| | - Dina Soliman
- King Saud University, Department of Botany and Microbiology, Riyadh 11495, Saudi Arabia
| | - Yaser Hassan Dewir
- King Saud University, College of Food and Agriculture Sciences, Riyadh 11451, Saudi Arabia.,Kafrelsheikh University, Faculty of Agriculture, Kafr El-Sheikh 33516, Egypt
| | - Humaira Rizwana
- King Saud University, Department of Botany and Microbiology, Riyadh 11495, Saudi Arabia
| |
Collapse
|
17
|
Abstract
Cinnamomum is a genus of the family Lauraceae, which has been recognized worldwide as an important genus due to its beneficial uses. A great deal of research on its phytochemistry and pharmacological effects has been conducted. It is noteworthy that terpenoids are the characteristic of Cinnamomum due to the peculiar structures and significant biological effects. For a more in-depth study and the better use of Cinnamomum plants in the future, the chemical structures and biological effects of terpenoids obtained from Cinnamomum were summarized in the present study. To date, a total of 181 terpenoids with various skeletons have been isolated from Cinnamomum. These compounds have been demonstrated to play an important role in immunomodulatory, anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. However, studies on the bioactive components from Cinnamomum plants have only focused on a dozen species. Hence, further studies on the potential pharmacological effects need to be conducted in the future.
Collapse
|
18
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|
19
|
Abukawsar MM, Saleh‐e‐In MM, Ahsan MA, Rahim MM, Bhuiyan MNH, Roy SK, Ghosh A, Naher S. Chemical, pharmacological and nutritional quality assessment of black pepper (Piper nigrumL.) seed cultivars. J Food Biochem 2018. [DOI: 10.1111/jfbc.12590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Md. Moshfekus Saleh‐e‐In
- Institute of National Analytical Research and Services (INARS), BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Aminul Ahsan
- Institute of National Analytical Research and Services (INARS), BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Matiur Rahim
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Nurul Huda Bhuiyan
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Sudhangshu Kumar Roy
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka Bangladesh
| | - Apu Ghosh
- Department of ChemistryJagannath University Dhaka Bangladesh
| | - Shamsun Naher
- Department of ChemistryJagannath University Dhaka Bangladesh
| |
Collapse
|
20
|
Drosopoulou E, Vlastos D, Efthimiou I, Kyrizaki P, Tsamadou S, Anagnostopoulou M, Kofidou D, Gavriilidis M, Mademtzoglou D, Mavragani-Tsipidou P. In vitro and in vivo evaluation of the genotoxic and antigenotoxic potential of the major Chios mastic water constituents. Sci Rep 2018; 8:12200. [PMID: 30111795 PMCID: PMC6093890 DOI: 10.1038/s41598-018-29810-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Chios mastic products are well-known for their broad applications in food industry, cosmetics, and healthcare since the antiquity. Given our recent finding that Chios mastic water (CMW) exerts antigenotoxic action, in the present study, we evaluated the genotoxic as well as the antigenotoxic potential of the four major compounds of CMW, namely, verbenone, α-terpineol, linalool, and trans-pinocarveol. The cytokinesis block micronucleus (CBMN) assay in cultured human lymphocytes and the Drosophila Somatic Mutation And Recombination Test (SMART), also known as the wing spot test, were employed. None of the four major CMW's constituents or their mixtures showed genotoxic or recombinogenic activity in either of the assays used. Co-treatment of each of the constituents with MMC revealed that all except trans-pinocarveol exerted antigenotoxic potential. Moreover, co-administration of verbenone with linalool or α-terpineol presented statistically significant reduction of MMC-induced mutagenicity. In conclusion, the major CMW constituents were shown to be free of genotoxic effects, while some exerted antigenotoxic activity either alone or in combinations, suggesting synergistic phenomena. Our results provide evidence on the key antigenotoxicity effectors of the plant extract CMW.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Paraskevi Kyrizaki
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Tsamadou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Anagnostopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Danai Kofidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maxim Gavriilidis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Mademtzoglou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Saleh-E-In MM, Van Staden J. Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:294-320. [PMID: 29331315 DOI: 10.1016/j.jep.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctotis arctotoides (Asteraceae) is part of the genus Arctotis. Arctotis is an African genus of approximately 70 species that occur widely in the African continent with diverse medicinal values. This plant is used for the treatment of indigestion and catarrh of the stomach, epilepsy, topical wounds and skin disorders among the ethnic groups in South Africa and reported to have a wide spectrum of pharmacological properties. AIM OF THE REVIEW The aim of the present review is to appraise the botany, traditional uses, phytochemistry, pharmacological potential, analytical methods and safety issues of A. arctotoides. Additionally, this review will help to fill the existing gaps in knowledge and highlight further research prospects in the field of phytochemistry and pharmacology. MATERIALS AND METHODS Information on A. arctotoides was collected from various resources, including books on African medicinal herbs and Zulu medicinal plants, theses, reports and the internet databases such as SciFinder, Google Scholar, Pubmed, Scopus, Web of Science, and Mendeley by using a combination of various meaningful keywords. This review surveys the available literature of the species from 1962 to April 2017. RESULTS In vitro and in vivo studies of the medicinal properties of A. arctotoides were reviewed. The main isolated and identified compounds were reported as sesquiterpenes, farnesol derivatives, germacranolide, guaianolides and some steroids, of which, nine were reported as antimicrobial. Monoterpenoids and sesquiterpenoids were the predominant essential oil compound classes of the leaves, flowers, stems and roots. The present review revealed potential pharmacological properties such as anti-oxidant, antibacterial, antifungal and anticancer activities of plant extracts as well as isolated compounds. Moreover, the review reports the safety profile (toxicity) of the crude extracts that had been screened on brine shrimps, rats and human cell lines. CONCLUSIONS The present review has focused on the phytochemistry, botany, ethnopharmacology, biological activities and toxicological information of A. arctotoides. On the basis of reported data, A. arctotoides has emerged as a good source of natural medicine for the treatment of microbial infections, skin diseases, anti-inflammatory and anticancer agents and also provides new insights for further isolation of new bioactive compounds, especially the discovery of antimicrobial, anti-inflammatory and anticancer novel therapeutic lead drug molecules. Additionally, intensive investigations regarding pharmacological properties, safety assessment and efficacy with their mechanism of action could be future research interests before starting clinical trials for medicinal practices.
Collapse
Key Words
- (E)-3-methyl-4-(4-((E)-4-methyl-5-oxopent-3-enyl)-5-oxo-2,5-dihydro-furan-2-yl)but-2-enyl acetate (PubChem CID: not found)
- (E)-5-(5-((E)-4-hydroxy-2-methylbut-2-enyl)-2-oxo-2,5-dihydrofuran-3-yl) -2-methylpent-2-enal (PubChem CID: not found)
- (E, E)-5-[4-(Acetyloxy)-2-methyl-2-butenyl]-3-[5-(acetyloxy)-4-methyl-3- pentenyl]-2(5H)-furanone (PubChem CID: not found)
- 1, 8-Cineole (PubChem CID: 2758)
- 10,14-Deoxyarctolide (PubChem CID: not found)
- 11β, 13-Dihydro-10, 14-desoxoarctiolide (PubChem CID: not found)
- 11β, 13-Dihydroarctiolide (PubChem CID: not found)
- 12, 14-Diacetoxy-2Z-farnesyl acetate (PubChem CID: not found)
- 14-Acetoxy-12-hydroxy-2Z-farnesol (PubChem CID: not found)
- 3-Deacetyl-3-isobutyryl arctolide (PubChem CID: not found)
- 3-Deacetyl-3-propionyl-11, 14-deoxoarctolide (PubChem CID: not found)
- 3-Deacetyl-3-propionylarctolide (PubChem CID: not found)
- 3-Desacetyl-10,14-desoxoarctolide (PubChem CID: not found)
- 3-O-[β-D-(6´-nonadeanoate) glucopyranosyl]-β-sitosterol (PubChem CID: not found)
- 4β, 15-dihydro-3-dehydro-zaluzanin C (PubChem CID: not found)
- Abietic acid (PubChem CID: 10569)
- Arctiolide (PubChem CID: not found)
- Arctodecurrolide (PubChem CID: not found)
- Arctolide (PubChem CID: 442144)
- Arctotis arctotoides
- Asteraceae
- Bicyclogermacrene (PubChem CID: 5315347)
- Botany and toxicology
- Caryophyllene oxide (PubChem CID: 1742210)
- Daucosterol (PubChem CID: 296119)
- Dehydrobrachylaenolide (PubChem CID: 44566739)
- Dehydrocostus lactone (PubChem CID: 73174)
- Ethnopharmacology
- Germacranolide (PubChem CID: not found)
- Glycerol-1-docosanoate (PubChem CID: 53480989)
- Grosshemin (PubChem CID: 442256)
- Limonene (PubChem CID: 440917)
- Linalool (PubChem CID: 6549)
- Lupeol (PubChem CID: 259846)
- Lupeol acetate (PubChem CID: 92157)
- Myrtenol (PubChem CID: 10582)
- Nepetin (PubChem CID: 5317284)
- Pedalitin (PubChem CID: 31161)
- Perydiscolic acid (PubChem CID: not found)
- Phytochemistry
- Piperitone (PubChem CID: 6987)
- Serratagenic acid (PubChem CID: 21594175)
- Spathulenol (PubChem CID: 92231)
- Stigmasterol (PubChem CID: 5280794)
- Terpinen-4-ol (PubChem CID: 11230)
- Zaluzanin C (PubChem CID: 72646)
- Zaluzanin D (PubChem CID: 12445012)
- cis-Nerolidol (PubChem CID: 5320128)
- cis-α-Bergamotene (PubChem CID: 91753502)
- cis-α-Bergamotol acetate (PubChem CID: 102208434)
- cis-α-Farnesene (PubChem CID: 5317320)
- trans-α-Bergamotol (PubChem CID: 6429302)
- α-Cadinol (PubChem CID: 6431302)
- β-Bisabolol (PubChem CID: 27208)
- β-Caryophyllene (PubChem CID: 5281515)
- β-Farnesene (PubChem CID: 5281517)
- β-sitosterol (PubChem CID: 222284)
- γ-Curcumene (PubChem CID: 12304273)
- γ-Terpinene (PubChem CID: 7461)
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
22
|
Rodenak-Kladniew B, Castro A, Stärkel P, De Saeger C, García de Bravo M, Crespo R. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci 2018; 199:48-59. [PMID: 29510199 DOI: 10.1016/j.lfs.2018.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
AIMS Linalool is a plant-derived monoterpene with anticancer activity, however its mechanisms of action remain poorly understood. The aim of this work was to elucidate the anticancer mechanisms of action of linalool in hepatocellular carcinoma (HCC) HepG2 cells. MAIN METHODS Cell viability and proliferation were determined by WST-1 assay and BrdU incorporation, respectively. Cell cycle analysis was assessed through flow cytometry (FC) and western blot (WB). Apoptosis was determined by caspase-3 activity, TUNEL assay and WB. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by FC and fluorescence microscopy. Expression of Ras, MAPKs (ERK, JNK and p38) and Akt/mTOR pathways were evaluated by WB. KEY FINDINGS Linalool (0-2.5 mM) dose-dependently inhibited cell proliferation by inducing G0/G1 cell cycle arrest, through Cdk4 and cyclin A downregulation, p21 and p27 upregulation, and apoptosis, characterized by MMP loss, caspase-3 activation, PARP cleavage and DNA fragmentation. Low concentrations of linalool (1.0 mM) reduced membrane-bound Ras and Akt activity whereas higher amounts (2.0 mM) triggered mTOR inhibition and ROS generation, in correlation with MAPKs activation and Akt phosphorylation. ROS scavenger N-acetyl-L-cysteine partially rescued HepG2 cell growth and prevented MPP depolarization, ERK and JNK activation. Moreover, specific ERK and Akt phosphorylation inhibitors potentiated linalool anti-cancer activity, pointing Akt and ERK activation as pro-survival mechanisms in response to higher concentrations of linalool. SIGNIFICANCE This report reveals that linalool induces G0/G1 arrest and apoptosis in HepG2 cells involving Ras, MAPKs and Akt/mTOR pathways and suggests that linalool is a promising anticancer agent for HCC therapy.
Collapse
Affiliation(s)
- Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Agustina Castro
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Peter Stärkel
- Laboratory of Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine De Saeger
- Laboratory of Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Margarita García de Bravo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Rosana Crespo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina.
| |
Collapse
|
23
|
Sahu N, Meena S, Shukla V, Chaturvedi P, Kumar B, Datta D, Arya KR. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:72-80. [PMID: 29109061 DOI: 10.1016/j.jep.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants used in traditional medicines are affordable, easily accessible, safer, less toxic and considered as a rich or efficient source of bioactive molecules for modern therapeutics. Artemisia nilagirica (AR) has a long history of use in Indian traditional medicine to combat a wide variety of diseases including cancer. AIM OF THE STUDY Considering the vast potential of traditional healing plants to deliver safer, less toxic and efficient chemotherapeutics, we have examined anticancer activity of ethanolic extract, bioactive fractions and sub-fractions of AR against different human cancer cell lines along with their phytochemical analysis to understand the insights of novel anticancer activities for further preclinical studies. MATERIALS AND METHODS Fresh plant material of AR was procured from the wild, dried and ground. The grinded materials was extracted in ethanol (AR-01) and fractionated into butanol (AR-02), ethyl acetate (AR-03), hexane (AR-04) and water (AR-05). The cytotoxicity was evaluated against three different human cancer cell lines, i.e. colon (DLD-1), lung (A-549), and breast (MCF-7) using Sulforhodamine B (SRB) assay along with non-cancerous VERO cells as control and doxorubicin (DOX) as positive control. As we observed strong cytotoxicity of AR-03 and AR-04 fractions against tested cells and marked cytotoxic effects particularly in colon cancer cell lines, we further re-fractionated, AR-03 into (AR-03A, AR-03B, AR-03C, AR-03D, AR-03E) and AR-04 into (AR-04A, AR-04B, AR-04C) sub-fractions by column chromatography and investigated against the same panel of cell lines in addition to one more colon cancer cell line (HT-29). Phytochemical analysis was performed through HPLC-ESI-QTOF-MS/MS fragmentation. RESULTS Ethyl acetate (AR-03) and hexane (AR-04) fractions were found to be the most cytotoxic against all the tested cell lines. Further, AR-03E and AR-04A sub-fractions were found more specific cytotoxic selectively against DLD-1 cancer cell lines at 100µg/ml concentration. HPLC-ESI-QTOF-MS/MS determination revealed the presence of 17 compounds in AR-01. Among them, 4 compounds were reported for the first time in this species. However, 3 identified compounds (artemorin, β-santonin and caryophyllene oxide) in AR-03E sub-fraction were commonly present in each bioactive fraction and may be considered as potential and safest cytotoxic agents for anticancer activity. CONCLUSIONS Experimental evidences reported in this paper for anticancer activity validate the traditional wisdom of Artemisia nilagirica as an anticancer herbal drug. To our knowledge, this is our first novel observation of cytotoxicity and selectivity of ethyl acetate and hexane sub-fraction of AR-01 i.e. AR-03E and AR-04A respectively against DLD-1 human cancer cell lines. HPLC-ESI-QTOF-MS/MS determination attributes the identification of cytotoxic compounds which may be used for further preclinical studies.
Collapse
Affiliation(s)
- Neha Sahu
- Ethnobotany Division CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sanjeev Meena
- Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Vijaya Shukla
- Sophisticated Analytical Instrument Facilities, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Priyank Chaturvedi
- Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facilities, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Dipak Datta
- Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - K R Arya
- Ethnobotany Division CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| |
Collapse
|
24
|
Ponnan A, Ramu K, Marudhamuthu M, Marimuthu R, Siva K, Kadarkarai M. Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz. CLINICAL PHYTOSCIENCE 2017. [DOI: 10.1186/s40816-017-0042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Caputo L, Souza LF, Alloisio S, Cornara L, De Feo V. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System. Int J Mol Sci 2016; 17:ijms17121999. [PMID: 27916876 PMCID: PMC5187799 DOI: 10.3390/ijms17121999] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 11/17/2016] [Indexed: 11/16/2022] Open
Abstract
The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Lucéia Fátima Souza
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
- Department of Agronomy, University of Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, Brazil.
| | | | - Laura Cornara
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| |
Collapse
|