1
|
Yao J, Geng X, Zheng H, Wang Z, Zhang C, Li J, Maimaiti Z, Qin Y. Study on the inhibitory mechanism of fig leaf extract against postharvest Fusarium in melon. PeerJ 2024; 12:e17654. [PMID: 39071129 PMCID: PMC11283778 DOI: 10.7717/peerj.17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
The objective of this study was to explore the fungistatic mechanism of fig leaf extract against Fusarium and to provide a theoretical basis for the development of new plant-derived fungicides. Methods The fungistaticity of fig leaf extract were analyzed by the ring of inhibition method. Fusarium equiseti was selected as the target for analyzing its fungistatic mechanism in terms of mycelial morphology, ultrastructure, cell membrane permeability, membrane plasma peroxidation, reactive oxygen species (ROS) content and changes in the activity of protective enzymes. The effect of this extract was verified in melon, and its components were determined by metabolite analysis using ultraperformance liquid chromatography‒mass spectrometry (UPLC‒MS). Results Fig leaf extract had an obvious inhibitory effect on Fusarium, and the difference was significant (P < 0.05) or highly significant (P < 0.01). Scanning and transmission electron microscopy revealed that F. equiseti hyphae exhibited obvious folding, twisting and puckering phenomena, resulting in an increase in the cytoplasmic leakage of spores, interstitial plasma, and the concentration of the nucleus, which seriously damaged the integrity of the fungal cell membrane. This phenomenon was confirmed by propidium iodide (PI) and fluorescein diacetate (FAD) staining, cell membrane permeability and malondialdehyde (MDA) content. Fig leaf extract also induced the mycelium to produce excessive H2O2,which led to lipid peroxidation of the cell membrane, promoted the accumulation of MDA, accelerated protein hydrolysis, induced an increase in antioxidant enzyme activity, and disrupted the balance of ROS metabolism; these findings showed that fungal growth was inhibited, which was verified in melons. A total of 1,540 secondary metabolites were detected by broad-targeted metabolomics, among which the fungistatic active substances flavonoids (15.45%), phenolic acids (15%), and alkaloids (10.71%) accounted for a high percentage and the highest relative content of these substances 1,3,7,8-tetrahydroxy-2- prenylxanthone, 8-hydroxyquinoline and Azelaic acid were analysed for their antimicrobial, anti-inflammatory, antioxidant, preventive effects against plant diseases and acquisition of resistance by plants. This confirms the reason for the fungicidal properties of fig leaf extracts. Conclusion Fig leaf extract has the potential to be developed into a plant-derived fungicide as a new means of postharvest pathogen prevention and control in melon.
Collapse
Affiliation(s)
- Jun Yao
- College of Horticulture, Xinjiang Agricultural University, Xinjiang, Urumqi, China
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Xinli Geng
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Heyun Zheng
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Zhiwei Wang
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Cuihuan Zhang
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Jing Li
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Zaituna Maimaiti
- Xinjiang Uygur Autonomous Region Grapevine and Melon Fruit Research Institute, Xinjiang, Shanshan, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Xinjiang, Urumqi, China
| |
Collapse
|
2
|
Combination of response surface methodology and UPLC-QTOF-MSE for phenolic compounds analysis from Cinnamomum cassia bark as a novel antifungal agent. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
3
|
Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine. Antibiotics (Basel) 2023; 12:antibiotics12020270. [PMID: 36830181 PMCID: PMC9952367 DOI: 10.3390/antibiotics12020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.
Collapse
|
4
|
Aflatoxins in Feed: Types, Metabolism, Health Consequences in Swine and Mitigation Strategies. Toxins (Basel) 2022; 14:toxins14120853. [PMID: 36548750 PMCID: PMC9783261 DOI: 10.3390/toxins14120853] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Feeding farm animals with aflatoxin-contaminated feed can cause various severe toxic effects, leading to increased susceptibility to infectious diseases and increased mortality, weight loss, poor performance and reduced reproductive capability. Following ingestion of contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in animals. Swine metabolism is not effective in detoxifying and excreting aflatoxins, meaning the risk of aflatoxicosis is increased. Thus, it is of great importance to elucidate the metabolism and all metabolic pathways associated with this mycotoxin. The damage induced by AFB1 in cells and tissues consists of inhibition of cell proliferation, carcinogenicity, immunosuppression, mutagenicity, oxidative stress, lipid peroxidation and DNA damage, leading to pathological lesions in the liver, spleen, lymph node, kidney, uterus, heart, and lungs of swine. At present, it is a challenging task and of serious concern to completely remove aflatoxins and their metabolites from feedstuff; thus, the aim of this study was a literature review on the deleterious effects of aflatoxins on swine metabolism, as well as alternatives that contribute to the detoxification or amelioration of aflatoxin-induced effects in farm animal feed.
Collapse
|
5
|
Addo JK, Owusu-Ansah E, Dayie NT, Cheseto X, Torto B. Synthesis of 1,2,3-triazole-thymol derivatives as potential antimicrobial agents. Heliyon 2022; 8:e10836. [PMID: 36217474 PMCID: PMC9547220 DOI: 10.1016/j.heliyon.2022.e10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Thymol as a natural biological template can be modified chemically since the hydroxyl group makes it a candidate for structural modification. Thus, this study incorporated the triazole moiety on thymol and the chlorination of thymol moiety to help improve its biological potency. Materials and methods A series of ten 1,2,3-triazole-thymol derivatives 1-10 were synthesized from thymol, by a click reaction between O-propargyl terminal alkyne of thymol and its chlorothymol with benzyl azide and substituted benzyl azides. Their structures were confirmed by spectroscopic methods (1H-NMR, 13C-NMR, IR, GC-MS-EI/CI and LC-ESI-QTOF-MS). The Well diffusion method using Müeller-Hinton agar plates was used to demonstrate the antimicrobial activities of the synthesized triazole-thymol derivatives on selected bacterial strains; Escherichia coli ATCC 25922, Staphylococcus aureus ATCC25923, Methicillin resistant S. aureus (MRSA), Pseudomonas aeruginosa ATCC 29853, E. coli ESBL, K l ebsiella pneumoniae NCTC 13438 and Meropenem Resistant E. coli. Results All the synthesized triazole-thymol derivatives showed significant but variable antibacterial activity against the seven medically important bacterial strains tested. The compound 4-((4-chloro-2-isopropyl-5-methylphenoxy)methyl)-1-(2-nitrobenzyl)-1H-1,2,3triazole (9) demonstrated a higher antibacterial activity with a mean zone of inhibition (38.7 mm) compared with ampicillin as the positive control which gave a zone size of 30.0 mm. In addition, the compound showed a three-fold potency than the parent compound, thymol (11.0 mm) against MRSA at a concentration of 100 μg/ml. Conclusion These results provide additional evidence of the exploitation of natural products like thymol as leads for drug development against medically important bacterial pathogens.
Collapse
Affiliation(s)
- Justice Kwaku Addo
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Ghana
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Ernest Owusu-Ansah
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Ghana
| | - Nicholas T.K.D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box 4236, Korle-Bu, Accra, Ghana
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Pandey AK, Samota MK, Sanches Silva A. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit Rev Food Sci Nutr 2022; 63:8672-8697. [PMID: 35452322 DOI: 10.1080/10408398.2022.2061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post Harvest Engineering & Technology, Ludhiana, Punjab, India
| | - Ana Sanches Silva
- Food Science, National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| |
Collapse
|
7
|
Kishawy ATY, Al-Khalaifah HS, Nada HS, Roushdy EM, Zaglool AW, Ahmed Ismail T, Ibrahim SM, Ibrahim D. Black Pepper or Radish Seed Oils in a New Combination of Essential Oils Modulated Broiler Chickens’ Performance and Expression of Digestive Enzymes, Lipogenesis, Immunity, and Autophagy-Related Genes. Vet Sci 2022; 9:vetsci9020043. [PMID: 35202296 PMCID: PMC8879254 DOI: 10.3390/vetsci9020043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Optimal combinations of essential oils (EOs) can enhance performance and maintain poultry productivity. The effects of EOs with black pepper oil (BPO) or radish seed oil (RSO) on performance and the expression of digestive enzymes, lipogenesis, immunity, and autophagy-related genes in broiler chickens were explored. Six dietary treatments for 300 one-day-old chicks were allocated as follows: controls were fed a basal diet, one group was fed an EO-supplemented diet (1.5 g/kg diet of parsley, mint, and carrot seed oils (1:1:1)), and other groups received Eos + BPO0.25, Eos + BPO0.5, Eos + RSO0.25, and Eos + RSO0.5 treatments, with a basal diet containing EOs plus BPO or RSO at the level of 0.25 or 0.5 g/kg, respectively. Supplementation with 0.5 g/kg of EOs plus BPO or RSO resulted in the most improved maximum BWG and FCR in broiler chickens. The lactobacilli population was increased in Eos + BPO0.5, followed by EOs + RSO0.5, unlike in the control. The highest expression of the CCK and PNLIP genes was identified in the Eos + BPO group. The FAS and ACC genes were upregulated, while the IgA and IL-10 genes were downregulated, with EOs plus RSO or BPO. The group that received Eos + BPO0.5, followed by Eos + RSO0.5, displayed patterns of higher expression for atg5, atg7, and atg12, with lower expression of mTOR. In summary, a new combination of EOs with 0.5 g/kg BPO had potential growth-promoting and immune-boosting effects in broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: (A.T.Y.K.); (D.I.)
| | - Hanan S. Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait;
| | - Hend S. Nada
- Departments of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Seham M. Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: (A.T.Y.K.); (D.I.)
| |
Collapse
|
8
|
Namiota M, Bonikowski R. The Current State of Knowledge about Essential Oil Fumigation for Quality of Crops during Postharvest. Int J Mol Sci 2021; 22:ijms222413351. [PMID: 34948149 PMCID: PMC8708446 DOI: 10.3390/ijms222413351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Prolonging crops’ shelf-life while retaining their high quality is a major issue related to postharvest management. During storage, fruits and vegetables are exposed to microbial attacks, which may cause spoilage. Crop deterioration causes the loss of physical properties and drops in quality and nutritional value. Hence, new techniques to improve the resistance of food products are being explored. One promising technique is fumigation. Essential oils and their constituents, due to their antimicrobial properties, are likely to be used as fumigants, as they are highly volatile, effective in low concentrations, biodegradable, and safe. Papers indicate that some of them can improve their quality by increasing the content of antioxidants. This comprehensive review aims to present the current state of knowledge about the influence of essential oil fumigation on crop quality. It covers antioxidant capacity, the content of some bioactive compounds, physicochemical properties, decay properties, and sensory attributes of fruits and vegetables treated with essential oil vapors. The review indicates that this technique might be an interesting field for further exploration due to the promising results presented in the studies. Moreover, the review presents major objectives for current studies and indicates a lack of recent papers in this field.
Collapse
|
9
|
Nißl L, Westhaeuser F, Noll M. Antimycotic Effects of 11 Essential Oil Components and Their Combinations on 13 Food Spoilage Yeasts and Molds. J Fungi (Basel) 2021; 7:872. [PMID: 34682293 PMCID: PMC8537543 DOI: 10.3390/jof7100872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
Food safety is important to reduce food spoilage microorganisms and foodborne pathogens. However, food safety is challenging, as customers' demand for natural preservatives is increasing. Essential oils (EOs) and their components (EOCs) are alternative antibacterial and antimycotic food additives. In this study, the minimal inhibitory concentrations (MIC) of 11 different EOCs against 13 food spoilage molds and yeasts were investigated via the microdilution method. Cinnamaldehyde (CA) revealed the lowest MIC for all tested strains and all EOCs (32.81-328.1 µg ml-1). However, CA is organoleptic and was therefore combined with other EOCs via the checkerboard method. Overall, 27 out of 91 combinations showed a synergistic effect, and both respective EOC concentrations could be reduced by maintaining MIC. Thereby, the combination with citral or citronellal showed promising results. The concentration-dependent effect of CA was studied in further detail on Saccharomyces cerevisiae, with CA causing delayed growth-kinetics and reduced total cell numbers. In addition, flow cytometric measurements combined with live-dead staining indicate the fungicidal effect of CA, due to decreasing total cell numbers and increasing relative amount of propidium iodide-positive cells. In this study, we demonstrated that CA is a potent candidate for the use as a natural preservative against food-relevant mold and yeasts showing fungistatic and fungicidal effects. Therefore, CA and EOC combinations with respective lower EOC concentrations reduce organoleptic reservations, which ease their application in the food industry.
Collapse
Affiliation(s)
| | | | - Matthias Noll
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; (L.N.); (F.W.)
| |
Collapse
|
10
|
Ranjith A, Srilatha C, Lekshmi P, Rameshbabu N. Antiaflatoxigenic potential of essential oils of spices – a review. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are important food contaminants posing a significant threat to food and feed safety and public health. Among the mycotoxins, aflatoxins are deemed to be a more significant contaminant due to their potent carcinogenic, and hepatotoxic effects, and their levels are highly regulated in the international food trade. Phytochemicals are considered a major source of natural antifungal agents. The volatile nature of essential oil of plants makes them ideal candidates for antifungal agents due to their ability to distribute in free air spaces in closed containers and penetrate through heterogeneous food materials. In these, essential oils in spices attain special attention due to their commercial availability and low toxicity. This article reviews the antiaflatoxigenic capacity of spice essential oils and the effect of essential oil composition on the activity and mechanism of antifungal action and is expected to be useful for the planning of further research in the subject area.
Collapse
Affiliation(s)
- A. Ranjith
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - C.M. Srilatha
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - P.C. Lekshmi
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - N. Rameshbabu
- Spices Board Quality Evaluation Laboratory, Suganda Bhavan, Palarivattom, Cochin, Kerala 682025, India
| |
Collapse
|
11
|
Sonigra P, Meena M. Metabolic Profile, Bioactivities, and Variations in the Chemical Constituents of Essential Oils of the Ferula Genus (Apiaceae). Front Pharmacol 2021; 11:608649. [PMID: 33776754 PMCID: PMC7994278 DOI: 10.3389/fphar.2020.608649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
The genus Ferula is the third largest and a well-known genus of the Apiaceae family. It is categorized in the Peucedaneae tribe and Ferulinae subtribe of the Apiaceae family. At present, about 180 Ferula species have been reported. The genus is mainly distributed throughout central and South-West Asia (especially Iran and Afghanistan), the far-East, North India, and the Mediterranean. The genus Ferula is characterized by the presence of oleo-gum-resins (asafoetida, sagapenum, galbanum, and ammoniacum) and their use in natural and conventional pharmaceuticals. The main phytochemicals present in the genus Ferula are as follows: coumarin, coumarin esters, sesquiterpenes, sesquiterpene lactones, monoterpene, monoterpene coumarins, prenylated coumarins, sulfur-containing compounds, phytoestrogen, flavonoids and carbohydrates. This genus is considered to be a valuable group of medicinal plants due to its many different biological and pharmacological uses as volatile oils (essential oils). Numerous biological activities are shown by the chemical components of the essential oils obtained from different Ferula species. Because this genus includes many bioactivities such as antimicrobial, insecticidal, antioxidant, cytotoxic, etc., researchers are now focusing on this genus. Several reviews are already available on this particular genus, including information about the importance and the uses of all the phytochemicals found in the species of Ferula. Despite this, no review that specifically provides information about the biological activities of Ferula-derived essential oils, has been published yet. Therefore, the present review has been conducted to provide important information about the chemical profile, factors affecting the chemical composition, and biological activities of essential oils of the Ferula species.
Collapse
Affiliation(s)
- Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
12
|
Nehme R, Andrés S, Pereira RB, Ben Jemaa M, Bouhallab S, Ceciliani F, López S, Rahali FZ, Ksouri R, Pereira DM, Abdennebi-Najar L. Essential Oils in Livestock: From Health to Food Quality. Antioxidants (Basel) 2021; 10:330. [PMID: 33672283 PMCID: PMC7926721 DOI: 10.3390/antiox10020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Using plant essential oils (EOs) contributes to the growing number of natural plants' applications in livestock. Scientific data supporting the efficacy of EOs as anti-inflammatory, antibacterial and antioxidant molecules accumulates over time; however, the cumulative evidence is not always sufficient. EOs antioxidant properties have been investigated mainly from human perspectives. Still, so far, our review is the first to combine the beneficial supporting properties of EOs in a One Health approach and as an animal product quality enhancer, opening new possibilities for their utilization in the livestock and nutrition sectors. We aim to compile the currently available data on the main anti-inflammatory effects of EOs, whether encapsulated or not, with a focus on mammary gland inflammation. We will also review the EOs' antioxidant activities when given in the diet or as a food preservative to counteract oxidative stress. We emphasize EOs' in vitro and in vivo ruminal microbiota and mechanisms of action to promote animal health and performance. Given the concept of DOHaD (Developmental Origin of Health and Diseases), supplementing animals with EOs in early life opens new perspectives in the nutrition sector. However, effective evaluation of the significant safety components is required before extending their use to livestock and veterinary medicine.
Collapse
Affiliation(s)
- Ralph Nehme
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- INRAE, Institut Agro, STLO, F-35042 Rennes, France;
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
| | - Renato B. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Meriem Ben Jemaa
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine Università degli Studi di Milano, 20122 Milano, Italy;
| | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain
| | - Fatma Zohra Rahali
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - David M. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Latifa Abdennebi-Najar
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| |
Collapse
|
13
|
Juárez ZN, Bach H, Bárcenas-Pozos ME, Hernández LR. Impact of the Persistence of Three Essential Oils with Antifungal Activities on Stored Wheat Grains, Flour, and Baked Products. Foods 2021; 10:foods10020213. [PMID: 33494180 PMCID: PMC7909754 DOI: 10.3390/foods10020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/05/2022] Open
Abstract
Wheat grains are exposed to several plagues after harvesting and during storage. These plagues include bacteria, fungi, and insects with detrimental outcomes to their quality and heavy losses to the farmers. Fungi are of special interest because of their ability to produce mycotoxins with health concerns. Once grains are harvested, synthetic fungicides, which are sprayed before long-term storage, normally control fungi; however, these synthetic products represent a health concern because of their toxicities. Previously, we reported the antifungal activity of the essential oils extracted from Porophyllum linaria, Agastache mexicana, and Buddleja perfoliata against fungal strains isolated from stored wheat. In this study, we sprayed wheat grains with the same essential oils to measure their persistence interval and to prepare baked products to assess potential changes in their physical properties. The persistence interval of the essential oils in grains indicated that it takes between 63 and 134 days to eliminate 90% of the original compounds. This extended time of the compounds in the grains together with a lack of physical properties modifications of the flour and baked products (post-treatment) suggest that the presence of oils in the grains is potentially safe to use. The solid data denote the technological feasibility of the treatment and the possible management of residues through adequate safety intervals.
Collapse
Affiliation(s)
- Zaida N. Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur #1103 Barrio Santiago, Puebla C.P. 72410, Mexico
- Correspondence: ; Tel.: +52-222-229-9400 (ext. 7917)
| | - Horacio Bach
- Department of Medicine, Division of Infectious Disease, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada;
| | - María E. Bárcenas-Pozos
- Department of Chemical and Food Engineering, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Luis R. Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
14
|
Antifungal, Antimycotoxigenic, and Antioxidant Activity of Essential Oils and Medicinal Plant Extracts. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2021. [DOI: 10.1007/978-981-15-7098-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Yapo AE, Strub C, Durand N, Ahoua ARC, Schorr-Galindo S, Bonfoh B, Fontana A, Koussémon M. Mass spectrometry-based detection and risk assessment of mycotoxin contamination of ‘kankankan’ used for roasted meat consumption in Abidjan, Côte d’Ivoire. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1564-1578. [DOI: 10.1080/19440049.2020.1784468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Armel Elysée Yapo
- Department of Food Science and Technology, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
- Department Research and Development, Centre Suisse De Recherches Scientifiques En Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Caroline Strub
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
| | - Noël Durand
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
- CIRAD, UMR Qualisud, Montpellier, France
| | - Angora Rémi Constant Ahoua
- Department Research and Development, Centre Suisse De Recherches Scientifiques En Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Sabine Schorr-Galindo
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
| | - Bassirou Bonfoh
- Department Research and Development, Centre Suisse De Recherches Scientifiques En Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Angélique Fontana
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
| | - Marina Koussémon
- Department of Food Science and Technology, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| |
Collapse
|
16
|
Goel V, Singla LD, Choudhury D. Cuminaldehyde induces oxidative stress-mediated physical damage and death of Haemonchus contortus. Biomed Pharmacother 2020; 130:110411. [PMID: 32682984 DOI: 10.1016/j.biopha.2020.110411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cuminaldehyde (CA), a monoterpenoid, preset in many plant sources including cumin, induces reactive oxygen-related damage and death in Haemonchus contortus, a parasitic worm with an LD50, values of 127.3 ± 7.5, 184.5 ± 12.1 and 104.1 ± 7.9 μg/mL for an adult female, adult male worms (12 h) and L3 larvae, respectively (24 h). Fifty percent of inhibition of egg hatching (IC50) was obtained at 142.4 ± 11.4 μg/mL after 48 h of exposure. Scanning electron microscopy revealed physical damage to the anterior and posterior ends, intestinal, ovarian, and esophageal regions of the warms on exposure to ca. The exposure of worms to CA also led to a systemic increase in reactive oxygen species (ROS) within 3 h. The better activity was seen with CA compared to standard antihelminthic drug albendazole (Alb). 74 μg/mL CA showed 2.3 fold more increase of catalase (CAT), 0.61 fold increase of superoxide dismutase (SOD), 3.3 fold increase of glutathione peroxidase (GPx) activity and 17.5 fold increase of glutathione (GSH) activity in comparison with Alb (500 μg/mL) for the same time of exposure (3 h). A firm increase of (2.9 fold) was also observed in nitric oxide synthase (NOS) activity within 12 h of exposure with CA (74 μg/mL) in comparison with Alb. Therefore the preclinical potential of CA is much higher than widely used antihelminthic drug Alb. The results open new opportunities to explore CA as a new active antihelminthic molecule.
Collapse
Affiliation(s)
- Vanshita Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Lachhman Das Singla
- Department of Veterinary Parasitology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141001, India.
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
17
|
Priyadarshi R, Rhim JW. Chitosan-based biodegradable functional films for food packaging applications. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102346] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Mostafavi FS, Zaeim D. Agar-based edible films for food packaging applications - A review. Int J Biol Macromol 2020; 159:1165-1176. [PMID: 32442572 DOI: 10.1016/j.ijbiomac.2020.05.123] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Agar is a biopolymer extracted from certain red algae. The continuous and transparent film made from agar gum is becoming a common and renewable alternative for plastic-based food packaging materials. However, plain agar film suffers from brittleness, high moisture permeability, and poor thermal stability. Considerable researches have been devoted to improving the properties of agar films to extend their applications. These include reinforcements by nanomaterials, blending with other biopolymers, and incorporating plasticizers, hydrophobic components, or antimicrobial agents into their structure. This article comprehensively reviews the functional properties and defects of edible films made from agar gum. Also, it describes various strategies and components used to make an agar film with desirable properties. Moreover, the applications of agar-based edible films with improved functionality for food packaging are discussed.
Collapse
Affiliation(s)
| | - Davood Zaeim
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
19
|
Thanushree M, Sailendri D, Yoha K, Moses J, Anandharamakrishnan C. Mycotoxin contamination in food: An exposition on spices. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
|
21
|
Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, Shalla AH, Rather MA. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 2019; 134:103580. [DOI: 10.1016/j.micpath.2019.103580] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
|
22
|
Frolova N, Ukrainets A, Korablova O, Voitsekhivskyi V. Plants of Nepeta cataria var. citriodora Beck. and essential oils from them for food industry. POTRAVINARSTVO 2019. [DOI: 10.5219/1109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nepeta cataria var. citriodora Beck. (catmints) is a source industrial production of citral and attractive raw material for food industry and cooking. Aerial part of Nepeta are characterized by high antimicrobial activity and fungicidal action against mold fungi, used in folk medicine, as ingredient in recipes for sausages, liqueurs and soft drinks, vegetable and fruit canned food, in the manufacture of vermouth. Ukrainian variety 'Melody' was created specifically for growing in the Forest-Steppe zone, and variety 'Peremozhets' – in the Steppe zone. Data on the yield aerial part and essential oil Nepeta was determined. The dry aerial part of plants N. cataria we used to create a dry spicy mixture for sweet dessert dishes. Quantitative content and qualitative composition of essential oil of plants by organs and phases of vegetation are presented in the article. In our research we used essential oils obtained by hydro distillation procedure for 2 h using Clevendger-type apparatus from the flowering parts of plants N. cataria 'Peremozhets' and 'Melody'. Investigate of components was carried out by high effective gas chromatography with HP 6890 chromatograph coupled with HP 5972 mass selective detector. The most abundant components of Nepeta essential oil was citral, geraniol, as well as nerol, citronellol, citronellal, carvacrol, camphor, eugenol. We proposed fractional distillation of essential oils to obtain a line of flavors with stable sensory and physicochemical indicators for food industry. The separation of essential oils into fractions was carried out on a pilot installation of fractional distillation DFD (Device of Fractional Distillation). Calculations of parameters controlled dispersal of essential oils (residual pressure, temperature regimes, number of theoretical plates, reflux number) were carried out. During fractionation of essential oil of N. cataria four fractions were obtained with a content of 96 ±0.5% to the total mass of samples. Sensory and physicochemical analysis of aromatic fractions announced them as promising flavours for food industry.
Collapse
|
23
|
Abd El-Hack ME, Samak DH, Noreldin AE, El-Naggar K, Abdo M. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31971-31986. [PMID: 30229484 DOI: 10.1007/s11356-018-3197-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|
24
|
Motloung L, De Saeger S, De Boevre M, Detavernier C, Audenaert K, Adebo O, Njobeh P. Study on mycotoxin contamination in South African food spices. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A validated QuEChERS-based method was used to investigate the occurrence of mycotoxins in 70 South African food spices [coarse chilli (n=14), ground chilli (n=4), paprika (n=7), ginger (n=5), chicken spices (n=8), onion spices (n=8), beef spices (n=5), Mexican chilli (n=9), vegetable spice (n=1), fruit chutney spices (n=4), and cheese spices (n=5)]. Mycotoxins were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results revealed that 40% of the samples were contaminated with aflatoxin B1, aflatoxin G1, ochratoxin A, sterigmatocystin, 3-acetyldeoxynivalenol, fumonisin B1, fumonisin B2 and/or roquefortine C. The contamination levels for aflatoxin B1 ranged from 3-19 μg/kg; aflatoxin G1, 10-11 μg/kg; ochratoxin A, 4-20 μg/kg; fumonisin B1 104-591 μg/kg; fumonisin B2, 64-5,897 μg/kg; sterigmatocystin, 11-18 μg/kg; 3-acetyldeoxynivalenol, 42-46 μg/kg; and roquefortine C, 17-57 μg/kg. Mycotoxins co-occurred in 11% of the spice samples. Amongst the samples analysed in this study, paprika had the highest positives (100%) for the determined mycotoxins. Previous reports on mycotoxin contamination in spices, focused on the incidence of aflatoxins and ochratoxin A, but not on the multi-mycotoxin profile in South African spices. This study thus provides a comprehensive assessment of mycotoxin contamination of spices in South Africa.
Collapse
Affiliation(s)
- L. Motloung
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - S. De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - M. De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C. Detavernier
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - K. Audenaert
- Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - O.A. Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - P.B. Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| |
Collapse
|
25
|
Predoi D, Iconaru SL, Buton N, Badea ML, Marutescu L. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E291. [PMID: 29710862 PMCID: PMC5977305 DOI: 10.3390/nano8050291] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
This study presents, for the first-time, the results of a study on the hydrodynamic diameter of essential oils (EOs) of basil and lavender in water, and solutions of EOs of basil (B) and lavender (L) and hydroxyapatite (HAp). The possible influence of basil and lavender EOs on the size of hydroxyapatite nanoparticles was analyzed by Scanning Electron Microscopy (SEM). We also investigated the in vitro antimicrobial activity of plant EOs and plant EOs hydroxyapatite respectively, against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus1144 (MRSA 1144) and S. aureus 1426) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Escherichia coli ESBL 4493). From the autocorrelation function, obtained by Dynamic Light Scattering (DLS) measurements it was observed that basil yielded one peak at an average hydrodynamic diameter of 354.16 nm, while lavender yielded one peak at an average hydrodynamic diameter of 259.76 nm. In the case of HAp nanoparticles coated with basil (HApB) and lavender (HApL) essential oil, the aggregation was minimal. We found that the lavender EO exhibited a very good inhibitory growth activity (MIC values ranging from <0.1% for E. coli reference strain to 0.78% for S. aureus strains). The biological studies indicated that HapL material displayed an enhanced antimicrobial activity, indicating the potential use of HAp as vehicle for low concentrations of lavender EO with antibacterial properties. Flow cytometry analysis (FCM) allowed us to determine some of the potential mechanisms of the antimicrobial activities of EOs, suggesting that lavender EO was active against E. coli by interfering with membrane potential, the membrane depolarization effect being increased by incorporation of the EOs into the microporous structure of HAp. These findings could contribute to the development of new antimicrobial agents that are urgently needed for combating the antibiotic resistance phenomena.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, 405 A Atomistilor Street, P.O. Box MG7, 077125 Magurele, Romania.
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, 405 A Atomistilor Street, P.O. Box MG7, 077125 Magurele, Romania.
| | - Nicolas Buton
- HORIBA Jobin Yvon S.A.S., 6-18, Rue du Canal, 91165 Longjumeau CEDEX, France.
| | - Monica Luminita Badea
- University of Agronomic Sciences and Veterinary Medicine, Faculty of Horticulture, 59 Mărăşti Blvd., 011464 Bucharest, Romania.
| | - Luminita Marutescu
- Microbiology Department, Faculty of Biology, University of Bucharest, 1⁻3 Portocalelor Lane, 77206 Bucharest, Romania.
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
26
|
Zomorodian K, Saharkhiz J, Pakshir K, Immeripour Z, Sadatsharifi A. The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Shelepova O, Vinogradova Y, Zaitchik B, Ruzhitsky A, Grygorieva O, Brindza J. Constituents of the essential oil in Solidago canadensis L. from Eurasia. POTRAVINARSTVO 2018. [DOI: 10.5219/847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydro distilled essential oils in air-dry samples of aerial parts of Solidago canadensis L., (Asteraceae) from eight local invasive populations were investigated by GC-MS analysis. A comparative study on quantity and composition of the essential oils obtained from plants, growing in different ecological and climatic conditions, ontogenesis phase and different plant organs was carried out The major compounds detected in oil samples of S. canadensis were α-pinene (1.3 - 61.27%), limonene (0.5 - 22.5%), bornyl acetat (3.4 - 29.8%) and germacrene D (1.8 - 39.2%). Samples from inflorescences contained the maximal percentage of monoterpene hydrocarbons, while the leaves' samples showed the maximal cumulative percentage of sesquiterpene and monoterpene hydrocarbons. Data obtained from our studies confirm the availability of alien invasive species Solidago canadensis for medicine and many other purposes. The variability of the qualitative and quantitative composition of essential oils in different geographical locations will allow futher selection of form containing the maximum amount of active substances.
Collapse
|
28
|
Mmongoyo J, Nair M, Linz J, Wu F, Mugula J, Dissanayake A, Zhang C, Day D, Wee J, Strasburg G. Bioactive compounds in Diospyros mafiensis roots inhibit growth, sporulation and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diospyros mafiensis F. White is a medicinal shrub or small tree (6 m tall) widely distributed in the Zanzibar-Inhambane regional mosaic and traditionally used to treat leprosy, diarrhoea, and skin fungal infections in Tanzania and Mozambique. Our objective was to determine the anti-aflatoxigenic properties of compounds from D. mafiensis root bark against vegetative growth, sporulation and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Bioassay-guided extraction, fractionation, and isolation of bioactive compounds using A. parasiticus B62 were employed. The bioactive compounds were elucidated using 1H and 13CNMR and LC-MS. Growth inhibition was determined by measuring the colony diameter of A. flavus AF3357 and A. parasiticus SU-1 ATCC56775. Inhibitory effects on sporulation were estimated using a haemocytometer. Total aflatoxin was quantified by direct competitive enzyme-linked immunosorbent assay (ELISA). Bioactive compounds diosquinone (DQ) and 3-hydroxydiosquinone (3HDQ) were identified. DQ weakly inhibited A. flavus and A. parasiticus vegetative growth (MIC50 > 100 µg/ml) and 3HDQ strongly inhibited A. flavus (MIC50 = 14.9 µg/ml) and A. parasiticus (MIC50 = 39.1 µg/ml). DQ strongly reduced total aflatoxin production by A. flavus from 157 to 36 ng/plate, and by A. parasiticus from 1,145 ng/plate to 45 ng/plate at 100 µg/ml. 3HDQ reduced total aflatoxin production by A. parasiticus from 1,145 to 32 ng/plate; stimulated production by A. flavus from 157 to 872 ng/plate at 12.5 µg/ml but reduced to 45 ng/plate at 100 µg/ml. In summary, DQ and 3HDQ could be used as natural antifungal compounds to prevent mould growth and aflatoxin accumulation in food and feed.
Collapse
Affiliation(s)
- J.A. Mmongoyo
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - M.G. Nair
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - J.E. Linz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - F. Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - J.K. Mugula
- Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006, Morogoro, Tanzania
| | - A.A. Dissanayake
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - C. Zhang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - D.M. Day
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - J.M. Wee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - G.M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER. Effects of Essential Oil Vapour Treatment on the Postharvest Disease Control and Different Defence Responses in Two Mango (Mangifera indica L.) Cultivars. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1891-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3012462. [PMID: 28090211 PMCID: PMC5206475 DOI: 10.1155/2016/3012462] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/10/2016] [Accepted: 10/09/2016] [Indexed: 12/28/2022]
Abstract
A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.
Collapse
Affiliation(s)
- Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Padmashree Institute of Management and Sciences, Kommagatta, Kengeri, Bangalore 560060, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, Uttar Pradesh 242001, India
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Mokhtar MAK, Nehal SEM. Potential control of beans (Phaseolus vulgaris L.) wilt disease using growth regulators, bioagent, antioxidants and essential oils as foliar application under field conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2016.8359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
32
|
Gill TA, Li J, Saenger M, Scofield SR. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat. J Appl Microbiol 2016; 121:1103-16. [PMID: 27253757 DOI: 10.1111/jam.13195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 11/27/2022]
Abstract
AIMS Fusarium graminearum is a very destructive fungal pathogen that leads to Fusarium head blight (FHB) in wheat, a disease which costs growers millions of dollars annually both in crop losses and in remediation efforts. Current countermeasures include the deployment of wheat varieties with some resistance to FHB in conjunction with timed fungicide treatments. In this article, we introduce a fungicide based on thymol, a naturally occurring plant phenolic derived from essential oils. To overcome the hydrophobicity of thymol, the thymol active was incorporated into a low-surfactant submicron emulsion with and without a carrier oil. METHODS AND RESULTS The minimum fungicidal concentration of F. graminearum was found to be both 0·02% for thymol emulsions with and without an oil component. Time-to-kill experiments showed that thymol emulsions were able to inactivate F. graminearum in as little as 10 s at concentrations above 0·06%. Spraying the thymol emulsions (~0·1% range) on the wheat variety Bobwhite demonstrated significant reductions in FHB infection rate (number of infected spikelets). However, with 0·5% thymol, the wheat heads exhibited premature senescence. Transmission and scanning electron micrographs suggest that the mechanism of antifungal action is membrane mediated, as conidia exposed to thymol showed complete organelle disorganization and evidence of lipid emulsification. CONCLUSION The collective experimental data suggest that thymol emulsions may be an effective naturally derived alternative to the current thymol treatments, and chemical fungicides in ameliorating FHB. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first thymol-derived nanoemulsion particles resuspended into water and not DMSO, exhibiting the same antibacterial/antifungal activity as previously described thymol and thyme oil treatments. This drastically reduces the environmental footprint thymol will leave if utilized as a fungicide treatment on field crops.
Collapse
Affiliation(s)
- T A Gill
- Department of Agronomy, College of Agriculture, USDA-ARS Purdue University, West Lafayette, IN, USA.
| | - J Li
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - M Saenger
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - S R Scofield
- Department of Agronomy, College of Agriculture, USDA-ARS Purdue University, West Lafayette, IN, USA
| |
Collapse
|
33
|
Xing Y, Xu Q, Yang SX, Chen C, Tang Y, Sun S, Zhang L, Che Z, Li X. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data. SENSORS 2016; 16:s16071111. [PMID: 27438841 PMCID: PMC4970155 DOI: 10.3390/s16071111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O₂ and increase the level of CO₂ in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption.
Collapse
Affiliation(s)
- Yage Xing
- Sichuan Province Key Laboratory of Grain and Oil Processing and Food Safety, Food and Bioengineering College, Xihua University, Chengdu 610039, China.
| | - Qinglian Xu
- Sichuan Province Key Laboratory of Grain and Oil Processing and Food Safety, Food and Bioengineering College, Xihua University, Chengdu 610039, China.
| | - Simon X Yang
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Cunkun Chen
- Key Laboratory of Physiological and Storage of Agricultural Products after Harvest in the Ministry of Agriculture, National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China.
| | - Yong Tang
- Sichuan Province Key Laboratory of Grain and Oil Processing and Food Safety, Food and Bioengineering College, Xihua University, Chengdu 610039, China.
| | - Shumin Sun
- Sichuan Province Key Laboratory of Grain and Oil Processing and Food Safety, Food and Bioengineering College, Xihua University, Chengdu 610039, China.
| | - Liang Zhang
- Sichuan Province Key Laboratory of Grain and Oil Processing and Food Safety, Food and Bioengineering College, Xihua University, Chengdu 610039, China.
| | - Zhenming Che
- Sichuan Province Key Laboratory of Grain and Oil Processing and Food Safety, Food and Bioengineering College, Xihua University, Chengdu 610039, China.
| | - Xihong Li
- Food Engineering and Biotechnology College, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
34
|
Berjeaud JM, Chevalier S, Schlusselhuber M, Portier E, Loiseau C, Aucher W, Lesouhaitier O, Verdon J. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front Microbiol 2016; 7:486. [PMID: 27092135 PMCID: PMC4824771 DOI: 10.3389/fmicb.2016.00486] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.
Collapse
Affiliation(s)
- Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Margot Schlusselhuber
- Laboratoire Aliments Bioprocédés Toxicologie Environnements, EA 4651, Université de Caen Caen, France
| | - Emilie Portier
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Clémence Loiseau
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Willy Aucher
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
35
|
Azzoune N, Mokrane S, Riba A, Bouras N, Verheecke C, Sabaou N, Mathieu F. Contamination of common spices by aflatoxigenic fungi and aflatoxin B1in Algeria. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2014.0426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- N. Azzoune
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B.P. 92, 16 050 Algiers, Algeria
| | - S. Mokrane
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B.P. 92, 16 050 Algiers, Algeria
| | - A. Riba
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B.P. 92, 16 050 Algiers, Algeria
| | - N. Bouras
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B.P. 92, 16 050 Algiers, Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, B.P. 455, 47000 Ghardaïa, Algeria
| | - C. Verheecke
- Université de Toulouse, INPT-ENSAT, Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS), 1 Avenue de l’Agrobiopole, B.P. 32607, Auzeville-Tolosane, 31326 Castanet-Tolosan, France
| | - N. Sabaou
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B.P. 92, 16 050 Algiers, Algeria
| | - F. Mathieu
- Université de Toulouse, INPT-ENSAT, Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS), 1 Avenue de l’Agrobiopole, B.P. 32607, Auzeville-Tolosane, 31326 Castanet-Tolosan, France
| |
Collapse
|
36
|
Affiliation(s)
- Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Alan D. W. Dobson
- Microbiology Department and Environmental Research Institute, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
37
|
Do KH, An TJ, Oh SK, Moon Y. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices. Toxins (Basel) 2015; 7:4111-30. [PMID: 26473926 PMCID: PMC4626724 DOI: 10.3390/toxins7104111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 01/16/2023] Open
Abstract
Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.
Collapse
Affiliation(s)
- Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
| | - Tae Jin An
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumseong 55365, Korea.
| | - Sang-Keun Oh
- Department of Applied Biology, College of Agricultural & Life Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
- Research Institute for Basic Sciences and Medical Research Institute, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
38
|
Wang Y, Zeng X, Zhou Z, Xing K, Tessema A, Zeng H, Tian J. Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Tian J, Wang Y, Zeng H, Li Z, Zhang P, Tessema A, Peng X. Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. Int J Food Microbiol 2015; 202:27-34. [DOI: 10.1016/j.ijfoodmicro.2015.02.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
40
|
Tian J, Zeng X, Lü A, Zhu A, Peng X, Wang Y. Perillaldehyde, a potential preservative agent in foods: Assessment of antifungal activity against microbial spoilage of cherry tomatoes. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Belda-Galbis CM, Leufvén A, Martínez A, Rodrigo D. Predictive microbiology quantification of the antimicrobial effect of carvacrol. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Stavropoulou A, Loulakakis K, Magan N, Tzortzakis N. Origanum dictamnus oil vapour suppresses the development of grey mould in eggplant fruit in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:562679. [PMID: 25254209 PMCID: PMC4165565 DOI: 10.1155/2014/562679] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022]
Abstract
Grey mould rot (Botrytis cinerea) development in vitro or in eggplant (Solanum melongena L.) fruit was evaluated after treatment with dittany (Origanum dictamnus L.) oil (DIT) and storage at 12°C and 95% relative humidity during or following exposure to the volatiles. DIT volatiles used in different concentration (0-50-100-250 μL/L) and times of exposure (up to 120 h) examined the effects on pathogen development as well as fruit quality parameters. In vitro, fungal colony growth was inhibited with the application of DIT oil (during or after exposure) and/or time of application. Continuous exposure to oils reduced conidial germination and production with fungistatic effects observed in 250 μL/L. In vivo, fungal lesion growth and conidial production reduced in DIT-treated fruits. Interesting, in fruits preexposed to volatiles before fungal inoculation, DIT application induced fruit resistance against the pathogen, by reduced lesion growth and conidial production. Conidial viability reduced in >100 μL/L DIT oil. Fruits exposed to essential oil did not affect fruit quality related attributes in general, while skin lightness (L value) increased in 50 and 100 μL/L DIT oil. The results of the current study indicated that dittany volatiles may be considered as an alternative food preservative, eliminating disease spread in the storage/transit atmospheres.
Collapse
Affiliation(s)
- Andriana Stavropoulou
- Department of Agriculture, School of Agriculture Food and Nutrition, Technological Education Institute of Crete, Stavromenos, 71004 Heraklion, Greece
| | - Kostas Loulakakis
- Department of Agriculture, School of Agriculture Food and Nutrition, Technological Education Institute of Crete, Stavromenos, 71004 Heraklion, Greece
| | - Naresh Magan
- School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| |
Collapse
|
43
|
|
44
|
Khattak F, Ronchi A, Castelli P, Sparks N. Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult Sci 2014; 93:132-7. [PMID: 24570432 PMCID: PMC4988537 DOI: 10.3382/ps.2013-03387] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The study evaluated the effect of a novel commercial preparation of natural blend of essential oils from basil, caraway, laurel, lemon, oregano, sage, tea, and thyme (Tecnaroma Herbal Mix PL) on growth performance, blood biochemistry, cecal morphology, and carcass quality of broilers. Six nutritionally adequate wheat and soybean-based diets were generated by the addition of Tecnaroma Herbal Mix PL at 0, 100, 200, 300, 400, and 500 g/t of feed. The diets were fed as crumbs in the starter phase (d 0–10) and as pellets during the grower (d 10–24) and finisher (d 24–42) phases. Nine hundred sixty 1-d-old chicks were allocated to the 6 dietary treatments each having 8 replicate pens with 20 birds per pen. The data obtained were analyzed using ANOVA with a P < 0.05 level of significance. Birds fed diets supplemented with Tecnaroma Herbal Mix PL had significantly heavier BW and higher (P < 0.05) weight gain and had improved (P < 0.05) feed to gain ratio compared with the control group during grower phase and overall performance. The blood biochemistry results showed no differences (P > 0.05) between treatments. The carcass weight, breast weight, and relative percentage of breast meat increased (P < 0.05) when diets were supplemented with Tecnaroma Herbal Mix PL compared with that from birds fed the control diet. The inclusion level of 300 g of Tecnaroma Herbal Mix PL/t of feed was optimum for enhancing breast meat yield and nutrient utilization as indicated by increased (P < 0.05) cecal villus surface area.
Collapse
Affiliation(s)
- F Khattak
- Avian Science Research Centre, Scotland's Rural College (SRUC), Ayr, KA6 5HW, Scotland
| | | | | | | |
Collapse
|
45
|
|
46
|
Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Med 2014; 24:e51-6. [PMID: 24582134 DOI: 10.1016/j.mycmed.2014.01.063] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 11/23/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE This work is an attempt to examine the antifungal activity of thymol, carvacrol, eugenol and menthol against 11 food-decaying fungi. METHODS The susceptibility test for the compounds was carried out in terms of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using microdilution method in 96 multi-well microtiter plates. RESULTS Results indicated that all compounds were effective to varying extents against various fungal isolates, with the highest efficacy displayed by carvacrol (mean MIC value: 154.5 μg/mL) (P<0.05). The incorporation of increased concentrations of all compounds to the media led to progressive and significant reduction in growth for all fungi. The most potent inhibitory activity of thymol, carvacrol, eugenol and menthol was found for Cladosporium spp. (MIC: 100 μg/mL), Aspergillus spp. (MIC: 100 μg/mL), Cladosporium spp. (MIC: 350 μg/mL), and Aspergillus spp. and Cladosporium spp. (MIC: 125 μg/mL), respectively. CONCLUSION Thus, the application of these herbal components could be considered as a good alternatives to inhibit fungal growth and to reduce the use of synthetic fungicides.
Collapse
Affiliation(s)
- S Abbaszadeh
- Baqiyatallah university of medical sciences, Tehran, Iran
| | - A Sharifzadeh
- Mycology research center, faculty of veterinary medicine, university of Tehran, Tehran, Iran
| | - H Shokri
- Faculty of veterinary medicine, Amol university of special modern technologies, 24th aftab, Imam Khomeini street, Amol, Iran.
| | - A R Khosravi
- Mycology research center, faculty of veterinary medicine, university of Tehran, Tehran, Iran
| | - A Abbaszadeh
- Kermanshah university of medical sciences, Kermanshah, Iran
| |
Collapse
|
47
|
Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage. ScientificWorldJournal 2013; 2013:230795. [PMID: 24453813 PMCID: PMC3884799 DOI: 10.1155/2013/230795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/10/2013] [Indexed: 12/04/2022] Open
Abstract
The antifungal efficacy of nerol (NEL) has been proved against Aspergillus flavus by using in vitro and in vivo tests. The mycelial growth of A. flavus was completely inhibited at concentrations of 0.8 μL/mL and 0.1 μL/mL NEL in the air at contact and vapor conditions, respectively. The NEL also had an evident inhibitory effect on spore germination in A. flavus along with NEL concentration as well as time-dependent kinetic inhibition. The NEL presented noticeable inhibition on dry mycelium weight and synthesis of aflatoxin B1 (AFB1) by A. flavus, totally restraining AFB1 production at 0.6 μL/mL. In real food system, the efficacy of the NEL on resistance to decay development in cherry tomatoes was investigated in vivo by exposing inoculated and control fruit groups to NEL vapor at different concentration. NEL vapors at 0.1 μL/mL air concentration significantly reduced artificially contaminated A. flavus and a broad spectrum of fungal microbiota. Results obtained from presented study showed that the NEL had a great antifungal activity and could be considered as a benefit and safe tool to control food spoilage.
Collapse
|
48
|
Wei T, Zhu W, Pang M, Liu Y, Dong J. Natural occurrence of fumonisins B1and B2in corn in four provinces of China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2013; 6:270-4. [DOI: 10.1080/19393210.2013.819816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Zamani-Zadeh M, Soleimanian-Zad S, Sheikh-Zeinoddin M. Biocontrol of gray mold disease on strawberry fruit by integration of Lactobacillus plantarum A7 with ajwain and cinnamon essential oils. J Food Sci 2013; 78:M1582-M1588. [PMID: 24024787 DOI: 10.1111/1750-3841.12242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
This study was conducted to evaluate the efficacy of the Lactobacillus plantarum A7 (L. Plantarum), ajwain and cinnamon essential oils (AO and CO, respectively) in suppressing gray mold rot in strawberry fruit. AO and CO showed over 90% inhibition of radial mycelia growth with lower concentration of the oils per plate for all tested pathogens. Combined application of L. plantarum with AO and CO was tested to assess the possible synergistic effects of these 3 elements on the control of tested plant pathogens. In this case both combinations of L. plantarum + AO and L. plantarum + CO inhibited the mycelia growth of the pathogens completely. Results showed that the combined treatment of strawberry fruits with L. plantarum + AO (50 μL) and L. plantarum + CO (100 μL) resulted in remarkably improved control of Botrytis infections, in comparison with application of L. plantarum or essential oils alone. Quality attributes (that is pH, acidity, vitamin C, and total soluble solid) of the strawberry fruits did not change significantly (P < 0.01) when combination of Lactobacillus and essential oils was used. To the best of our knowledge, this is the first report on the effects of combination of a Lactobacillus as an antagonist bacterium with essential oils to increase the shelf life of strawberry.
Collapse
Affiliation(s)
- Maryam Zamani-Zadeh
- Dept. of Food Science and Technology, Food Biotechnology and Microbiology Laboratory, College of Agriculture, Isfahan Univ. of Technology, Isfahan 84156, Iran
| | - Sabihe Soleimanian-Zad
- Dept. of Food Science and Technology, Food Biotechnology and Microbiology Laboratory, College of Agriculture, Isfahan Univ. of Technology, Isfahan 84156, Iran
| | - Mahmoud Sheikh-Zeinoddin
- Dept. of Food Science and Technology, Food Biotechnology and Microbiology Laboratory, College of Agriculture, Isfahan Univ. of Technology, Isfahan 84156, Iran
| |
Collapse
|
50
|
Sellamuthu PS, Mafune M, Sivakumar D, Soundy P. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3024-31. [PMID: 23512681 DOI: 10.1002/jsfa.6135] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/22/2013] [Accepted: 03/19/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Postharvest application of prochloraz fungicide is commercially practiced to control anthracnose, a postharvest disease in avocado. Increasing consumer concern regarding food safety and demand for organically produced fruits make it necessary to search for natural environmentally friendly alternative products and processes for the fruit industry. RESULTS A combination of modified atmosphere packaging (MAP; ∼8% CO₂, 2% O₂) plus thyme oil (TO) was evaluated on the incidence and severity of anthracnose, physiological disorders (grey pulp, vascular browning), fruit quality parameters (L*, h°, firmness, weight loss) and sensory parameters (taste, texture, flavour and overall acceptance), phenylalanine ammonia-lyase (PAL) enzyme activity, total phenolic compounds, flavonoid contents and antioxidant activity in avocados ('Fuerte' and 'Hass' cultivars) held at 10 °C cold storage for 18 days and thereafter, ripened at 25 °C for 5-10 days. Stand-alone MAP, commercial treatment (prochloraz 0.05%) and untreated (control) fruit were included for comparison. MAP + TO treatment significantly (P < 0.05) reduced the incidence and severity of anthracnose, grey pulp, vascular browning, weight loss and loss of fruit firmness, and showed acceptable taste, flavour, texture and higher overall acceptance, increased PAL activity, total phenolic compounds, flavonoid contents and antioxidant activity, after ripening at 25 °C followed by cold storage at 10 °C. CONCLUSION This investigation recommends MAP + TO combination treatment as a suitable alternative to the currently adopted prochloraz application.
Collapse
Affiliation(s)
- Periyar Selvam Sellamuthu
- Postharvest Technology Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | | | | | | |
Collapse
|