1
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
2
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|
4
|
Zhang H, Tikekar RV, Ding Q, Gilbert AR, Wimsatt ST. Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food-grade compounds. Compr Rev Food Sci Food Saf 2020; 19:2110-2138. [PMID: 33337103 DOI: 10.1111/1541-4337.12582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
There is a need to develop food processing technologies with enhanced antimicrobial capacity against foodborne pathogens. While considering the challenges of adequate inactivation of pathogenic microorganisms in different food matrices, the emerging technologies are also expected to be sustainable and have a minimum impact on food quality and nutrients. Synergistic combinations of food processing technologies and food-grade compounds have a great potential to address these needs. During these combined treatments, food processes directly or indirectly interact with added chemicals, intensifying the overall antimicrobial effect. This review provides an overview of the combinations of different thermal or nonthermal processes with a variety of food-grade compounds that show synergistic antimicrobial effect against pathogenic microorganisms in foods and model systems. Further, we summarize the underlying mechanisms for representative combined treatments that are responsible for the enhanced microbial inactivation. Finally, regulatory issues and challenges for further development and technical transfer of these new approaches at the industrial level are also discussed.
Collapse
Affiliation(s)
- Hongchao Zhang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Andrea R Gilbert
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Stratton T Wimsatt
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
|
6
|
Optimization on Antimicrobial Effects of Natural Compound Preservative Against B. cereus and E. coli by RSM. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9317-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Muñoz A, Palgan I, Noci F, Cronin D, Morgan D, Whyte P, Lyng J. Combinations of selected non-thermal technologies and antimicrobials for microbial inactivation in a buffer system. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Saldaña G, Monfort S, Condón S, Raso J, Álvarez I. Effect of temperature, pH and presence of nisin on inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 by pulsed electric fields. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.03.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Ngadi MO, Latheef MB, Kassama L. Emerging technologies for microbial control in food processing. FOOD ENGINEERING SERIES 2012. [DOI: 10.1007/978-1-4614-1587-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Martín-Belloso O, Sobrino-López A. Combination of Pulsed Electric Fields with Other Preservation Techniques. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0512-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Martínez Viedma P, Sobrino López A, Ben Omar N, Abriouel H, Lucas López R, Valdivia E, Martín Belloso O, Gálvez A. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. Int J Food Microbiol 2008; 128:244-9. [PMID: 18829125 DOI: 10.1016/j.ijfoodmicro.2008.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 07/22/2008] [Accepted: 08/24/2008] [Indexed: 10/21/2022]
Abstract
The effect of the broad spectrum cyclic antimicrobial peptide enterocin AS-48 combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode) was tested on Salmonella enterica CECT 915 in apple juice. A response surface methodology was applied to study the bactericidal effects of the combined treatment. The process variables were AS-48 concentration, temperature, and HIPEF treatment time. While treatment with enterocin AS-48 alone up to 60 microg/ml had no effect on the viability of S. enterica in apple juice, an increased bactericidal activity was observed in combination with HIPEF treatments. Survival fraction was affected by treatment time, enterocin AS48 concentration and treatment temperature. The combination of 100 micros of HIPEF treatment, 30 microg/ml of AS-48, and temperature of 20 degrees C resulted in the lowest inactivation, with only a 1.2-log reduction. The maximum inactivation of 4.5-log cycles was achieved with HIPEF treatment for 1000 micros in combination with 60 microg/ml of AS-48 and a treatment temperature of 40 degrees C. Synergism between enterocin AS-48 and HIPEF treatment depended on the sequence order application, since it was observed only when HIPEF was applied in the presence of previously-added bacteriocin. The combined treatment could improve the safety of freshly-made apple juice against S. enterica transmission.
Collapse
Affiliation(s)
- Pilar Martínez Viedma
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gálvez A, Abriouel H, López RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 2007; 120:51-70. [PMID: 17614151 DOI: 10.1016/j.ijfoodmicro.2007.06.001] [Citation(s) in RCA: 629] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/21/2006] [Indexed: 11/15/2022]
Abstract
Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to avoid development of resistant strains. The combination of bacteriocins and physical treatments like high pressure processing or pulsed electric fields also offer good opportunities for more effective preservation of foods, providing an additional barrier to more refractile forms like bacterial endospores as well. The effectiveness of bacteriocins is often dictated by environmental factors like pH, temperature, food composition and structure, as well as the food microbiota. Foods must be considered as complex ecosystems in which microbial interactions may have a great influence on the microbial balance and proliferation of beneficial or harmful bacteria. Recent developments in molecular microbial ecology can help to better understand the global effects of bacteriocins in food ecosystems, and the study of bacterial genomes may reveal new sources of bacteriocins.
Collapse
Affiliation(s)
- Antonio Gálvez
- Area de Microbiología, Facultad de Ciencias Experimentales, Universidad de Jaén, Spain.
| | | | | | | |
Collapse
|
14
|
Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J FOOD ENG 2007. [DOI: 10.1016/j.jfoodeng.2006.01.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Sobrino-López A, Martín-Belloso O. Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. J Food Prot 2006; 69:345-53. [PMID: 16496575 DOI: 10.4315/0362-028x-69.2.345] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-intensity pulsed electric fields (HIPEF) can be used as a nonthermal preservation method that is believed to enhance the effect of nisin on microorganisms such as Staphylococcus aureus. The survival of S. aureus inoculated into skim milk and treated with nisin, with HIPEF, or with a combination of nisin-HIPEF was evaluated. Nisin dose, milk pH, and HIPEF treatment time were the controlled variables that were set up at 20 to 150 ppm, pH 5.0 to 6.8, and 240 to 2,400 micros, respectively. HIPEF strength and pulse width were kept constant at 35 kV/cm and 4 micros, respectively. No reduction in S. aureus concentration was observed in skim milk at its natural pH after treatment with nisin, but 1.1 log units were recovered after 90 min of treatment at pH 5.0 with 150 ppm nisin. A reduction in viable S. aureus counts of 0.3 and 1.0 log unit in skim milk treated with HIPEF at its natural pH was observed at 240 and 2,400 micros, respectively. The nisin-HIPEF treatment design was based on a response surface methodology. The combined effect of nisin and HIPEF was clearly synergistic. However, synergism depended on pH. A maximum microbial inactivation of 6.0 log units was observed at pH 6.8, 20 ppm nisin, and 2,400 micros of HIPEF treatment time, whereas a reduction of over 4.5 log units was achieved when pH, nisin concentration, and HIPEF treatment times were set at 5.0, 150 ppm, and 240 micros, respectively.
Collapse
|
16
|
Li SQ, Zhang HQ, Jin TZ, Turek EJ, Lau MH. Elimination of Lactobacillus plantarum and achievement of shelf stable model salad dressing by pilot scale pulsed electric fields combined with mild heat. INNOV FOOD SCI EMERG 2005. [DOI: 10.1016/j.ifset.2005.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang X, Liu Y, Xie B, Shi X, Zhou J, Zhang H. Effect of nisin on the growth ofStaphylococcus aureus determined by a microcalorimetric method. Mol Nutr Food Res 2005; 49:350-4. [PMID: 15789372 DOI: 10.1002/mnfr.200400079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel microcalorimetric technique based on the bacterial heat output was applied to evaluate the biological effect of nisin on the growth of Staphylococcus aureus. The thermogenic curves of S. aureus in the presence of nisin were studied by an LKB-2277 Thermal Activity Monitor. The thermokinetic parameters, such as the growth rate constant (k), the generation times (G), the inhibitory ratio (I), and the half inhibitory concentration (IC50), for the growth of S. aureus at different nisin concentrations were determined. The relationship between the growth rate constant (k) and the concentration of nisin (c) is nearly linear, which can be modeled by the formula k = 0.03794 - 4.005 x 10(-4) x c, with a correlation coefficient of -0.9971. Based on this model, we obtained the critical inhibitory concentration of nisin on the growth of S. aureus at 94.73 IU/mL. We proposed that this microcalorimetric method could be a useful tool in monitoring the biological effect of nisin on microorganisms, and providing valuable information on the study of microorganism metabolisms.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Food Safety and Microbiology, HuaZhong Agricultural University, Wuhan, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol 2004; 37:448-51. [PMID: 14633097 DOI: 10.1046/j.1472-765x.2003.01427.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The objective of this study was to evaluate the inhibitory activity of several natural organic compounds alone or in combination with nisin against Escherichia coli and Salmonella Typhimurium. METHODS AND RESULTS The minimum inhibitory concentration (MIC) of five natural organic compounds were determined, and the effect of their combinations with nisin was evaluated by the checkerboard assay using the Bioscreen C. As expected, nisin by itself showed no inhibition against either of the Gram-negative bacteria. Thymol was found to be the most effective with the lowest MIC values of 1.0 and 1.2 mmol 1-1 against Salm. Typhimurium and E. coli, respectively. After thymol, the antimicrobial order of the natural organic compounds was carvacrol > eugenol > cinnamic acid > diacetyl. However, the combination of nisin with the natural organic compounds did not result in the enhancement of their antimicrobial activities. On the contrary, combination of nisin with diacetyl against Salm. Typhimurium resulted in an antagonism of diacetyl activity. CONCLUSIONS While the individual natural organic compounds showed inhibitory activity against the two Gram-negatives, their combinations with nisin showed no improvement of antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the potential of the natural organic compounds to control E. coli and Salm. Typhimurium.
Collapse
Affiliation(s)
- N A Olasupo
- Department of Microbiology, Lagos State University, Ojo, Lagos, Nigeria
| | | | | | | |
Collapse
|