1
|
Development and evaluation of a real-time fluorescence, and naked-eye colorimetric, loop-mediated isothermal amplification-based method for the rapid detection of spoilage fungi in fruit preparations. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Development of a real-time PCR assay with an internal amplification control for the detection of spoilage fungi in fruit preparations. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Roumani F, Rodrigues C, Barros-Velázquez J, Garrido-Maestu A, Prado M. Development of a Panfungal Recombinase Polymerase Amplification (RPA) Method Coupled with Lateral Flow Strips for the Detection of Spoilage Fungi. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ion mobility spectrometry and mass spectrometry coupled to gas chromatography for analysis of microbial contaminated cosmetic creams. Anal Chim Acta 2020; 1128:52-61. [DOI: 10.1016/j.aca.2020.06.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 11/19/2022]
|
5
|
Odeyemi OA, Alegbeleye OO, Strateva M, Stratev D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr Rev Food Sci Food Saf 2020; 19:311-331. [PMID: 33325162 DOI: 10.1111/1541-4337.12526] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
The increasing global population has resulted in increased demand for food. Goods quality and safe food is required for healthy living. However, food spoilage has resulted in food insecurity in different regions of the world. Spoilage of food occurs when the quality of food deteriorates from its original organoleptic properties observed at the time of processing. Food spoilage results in huge economic losses to both producers (farmers) and consumers. Factors such as storage temperature, pH, water availability, presence of spoilage microorganisms including bacteria and fungi, initial microbial load (total viable count-TVC), and processing influence the rate of food spoilage. This article reviews the spoilage microbiota and spoilage mechanisms in meat and dairy products and seafood. Understanding food spoilage mechanisms will assist in the development of robust technologies for the prevention of food spoilage and waste.
Collapse
Affiliation(s)
- Olumide Adedokun Odeyemi
- Ecology and Biodiversity Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, Australia.,Food Safety and Quality Unit, Centre for Research, Training and Development, Higis International Foundation, Nigeria
| | | | - Mariyana Strateva
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Deyan Stratev
- Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
6
|
Head-space gas chromatography coupled to mass spectrometry for the assessment of the contamination of mayonnaise by yeasts. Food Chem 2019; 289:461-467. [DOI: 10.1016/j.foodchem.2019.03.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 11/18/2022]
|
7
|
Sessou P, Keisam S, Tuikhar N, Gagara M, Farougou S, Jeyaram K. High-Throughput Illumina MiSeq Amplicon Sequencing of Yeast Communities Associated With Indigenous Dairy Products From Republics of Benin and Niger. Front Microbiol 2019; 10:594. [PMID: 31001212 PMCID: PMC6456676 DOI: 10.3389/fmicb.2019.00594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Traditional Wagashi cheese and fermented cow milk are among the most popular dairy products appreciated by people from Benin, Niger, and the neighboring region. These products are the main source of protein in the diet of the low-income population in the region. The fermented milk is prepared by spontaneous fermentation without back-slopping. Whereas, the leaf extract of Calotropis procera is used for curdling the milk to prepare the soft Wagashi cheese. The present study aims to provide in-depth analysis of yeast communities associated with these traditional milk products by high-throughput Illumina MiSeq amplicon sequencing of internal transcribed spacer (ITS) region of fungal rRNA genes. A total of 60 samples, 20 samples of fermented milk each from Benin and Niger, and 20 samples of Wagashi cheese from Benin were used for analysis. The metagenomic investigation revealed that Kluyveromyces marxianus, Saccharomyces cerevisiae, Candida parapsilosis, and Sagenomella keratitidis were the predominant yeast species present in the traditional milk products. Furthermore, we noticed a high presence of K. marxianus (61.1% relative abundance) in the Wagashi cheese and S. cerevisiae (28.4% relative abundance) in the fermented milk of Niger. The presence of potential pathogenic yeast C. parapsilosis and S. keratitidis in these African milk products calls for further investigation to assess their safety. The predominant yeast K. marxianus and S. cerevisiae, recognized with generally regarded as safe (GRAS) status, could be further selected as starter culture along with lactic acid bacteria for developing controlled fermentation processes with enhanced product quality and safety.
Collapse
Affiliation(s)
- Philippe Sessou
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Santosh Keisam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, India
| | - Ngangyola Tuikhar
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, India
| | | | - Souaïbou Farougou
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, India
| |
Collapse
|
8
|
Molecular identification of isolated fungi from unopened containers of greek yogurt by DNA sequencing of internal transcribed spacer region. Pathogens 2014; 3:499-509. [PMID: 25438008 PMCID: PMC4243425 DOI: 10.3390/pathogens3030499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022] Open
Abstract
In our previous study, we described the development of an internal transcribed spacer (ITS)1 sequencing method, and used this protocol in species-identification of isolated fungi collected from the manufacturing areas of a compounding company known to have caused the multistate fungal meningitis outbreak in the United States. In this follow-up study, we have analyzed the unopened vials of Greek yogurt from the recalled batch to determine the possible cause of microbial contamination in the product. A total of 15 unopened vials of Greek yogurt belonging to the recalled batch were examined for the detection of fungi in these samples known to cause foodborne illness following conventional microbiological protocols. Fungi were isolated from all of the 15 Greek yogurt samples analyzed. The isolated fungi were genetically typed by DNA sequencing of PCR-amplified ITS1 region of rRNA gene. Analysis of data confirmed all of the isolated fungal isolates from the Greek yogurt to be Rhizomucor variabilis. The generated ITS1 sequences matched 100% with the published sequences available in GenBank. In addition, these yogurt samples were also tested for the presence of five types of bacteria (Salmonella, Listeria, Staphylococcus, Bacillus and Escherichia coli) causing foodborne disease in humans, and found negative for all of them.
Collapse
|
9
|
Ishikawa H, Kasahara K, Sato S, Shimakawa Y, Watanabe K. Simple and rapid method for the detection of Filobasidiella neoformans in a probiotic dairy product by using loop-mediated isothermal amplification. Int J Food Microbiol 2014; 178:107-12. [PMID: 24685682 DOI: 10.1016/j.ijfoodmicro.2014.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/21/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Abstract
Yeast contamination is a serious problem in the food industry and a major cause of food spoilage. Several yeasts, such as Filobasidiella neoformans, which cause cryptococcosis in humans, are also opportunistic pathogens, so a simple and rapid method for monitoring yeast contamination in food is essential. Here, we developed a simple and rapid method that utilizes loop-mediated isothermal amplification (LAMP) for the detection of F. neoformans. A set of five specific LAMP primers was designed that targeted the 5.8S-26S rDNA internal transcribed spacer 2 region of F. neoformans, and the primer set's specificity was confirmed. In a pure culture of F. neoformans, the LAMP assay had a lower sensitivity threshold of 10(2)cells/mL at a runtime of 60min. In a probiotic dairy product artificially contaminated with F. neoformans, the LAMP assay also had a lower sensitivity threshold of 10(2)cells/mL, which was comparable to the sensitivity of a quantitative PCR (qPCR) assay. We also developed a simple two-step method for the extraction of DNA from a probiotic dairy product that can be performed within 15min. This method involves initial protease treatment of the test sample at 45°C for 3min followed by boiling at 100°C for 5min under alkaline conditions. In a probiotic dairy product artificially contaminated with F. neoformans, analysis by means of our novel DNA extraction method followed by LAMP with our specific primer set had a lower sensitivity threshold of 10(3)cells/mL at a runtime of 60min. In contrast, use of our novel method of DNA extraction followed by qPCR assay had a lower sensitivity threshold of only 10(5)cells/mL at a runtime of 3 to 4h. Therefore, unlike the PCR assay, our LAMP assay can be used to quickly evaluate yeast contamination and is sensitive even for crude samples containing bacteria or background impurities. Our study provides a powerful tool for the primary screening of large numbers of food samples for yeast contamination.
Collapse
Affiliation(s)
- Hiroshi Ishikawa
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan.
| | - Kohei Kasahara
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| | - Sumie Sato
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| | - Yasuhisa Shimakawa
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| | - Koichi Watanabe
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan.
| |
Collapse
|
10
|
Mayoral MB, Martin R, Hernández PE, González I, García T. A reverse transcriptase PCR technique for the detection and viability assessment of Kluyveromyces marxianus in yoghurt. J Food Prot 2006; 69:2210-6. [PMID: 16995526 DOI: 10.4315/0362-028x-69.9.2210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A fast and sensitive reverse transcriptase PCR (RT-PCR) method was developed for the detection of viable Kluyveromyces marxianus in yoghurt. Yeast-specific primers were used with the RT-PCR to evaluate the suitability of 18S rRNA as a target for the detection of viable yeasts in pure culture and yoghurt. The RT-PCR assay was able to detect down to 10(2) CFU ml(-1) in yoghurt samples contaminated with viable yeast cells. Application of the RT-PCR method to commercial yoghurt samples demonstrated the utility of this technique for detection of low concentrations of viable yeast cells in naturally contaminated dairy products. The 18S rRNA molecule is an appropriate target for cell viability assessment because of its limited persistence after cell death and the resultant high level of sensitivity of the assay.
Collapse
Affiliation(s)
- María Belén Mayoral
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Mayoral MB, Martín R, Sanz A, Hernández PE, González I, García T. Detection of Kluyveromyces marxianus and other spoilage yeasts in yoghurt using a PCR-culture technique. Int J Food Microbiol 2005; 105:27-34. [PMID: 16026876 DOI: 10.1016/j.ijfoodmicro.2005.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/26/2005] [Accepted: 06/09/2005] [Indexed: 11/30/2022]
Abstract
A combined PCR-culture technique was developed for the detection of viable yeasts in yoghurt samples. Yoghurt samples were inoculated with either viable or heat-inactivated Kluyveromyces marxianus cells, and analyzed before and after incubation for 24 h at 25 degrees C under agitation. DNA was extracted from the samples and amplified using yeast-specific primers targeted at the gene coding for the 18S rRNA. A 251-bp fragment was amplified by the Polymerase Chain Reaction from the yoghurt samples containing initial yeasts counts of 10 cfu g(-1) or higher, whereas no PCR product was generated from control uninoculated yoghurt samples. Comparison of PCR results obtained before and after the incubation step was used to assess yeast viability. Viability was also confirmed by plating on Sabouraud-Dextrose-Chloramphenicol Agar. Moreover, comparison of the results obtained using PCR-culture and plate count methods for the analysis of commercial yoghurt samples, demonstrated that the PCR-culture technique developed in this work can be very useful for the rapid detection of viable spoilage yeasts in dairy industries.
Collapse
Affiliation(s)
- María Belén Mayoral
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Sanz A, Martín R, Mayoral MB, Hernández PE, González I, Lacarra TG. Development of a PCR-culture technique for rapid detection of yeast species in vacuum packed ham. Meat Sci 2005; 71:230-7. [DOI: 10.1016/j.meatsci.2004.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Revised: 12/13/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
|