1
|
Oteiza JM, Prado-Silva LD, Caturla MYR, Barril PA, Giannuzzi L, Sant'Ana AS. Variability in the acid adaptation of ten different O157:H7 and non-O157 Escherichia coli strains in orange juice and the impact on UV radiation resistance. Food Microbiol 2024; 124:104610. [PMID: 39244362 DOI: 10.1016/j.fm.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to assess the impact of adaptation of ten strains of O157:H7 and non-O157 Escherichia coli to low pH (acid shock or slow acidification) and the effects of this exposure or not on the resistance of E. coli strains to UV radiation in orange juice (pH 3.5). The acid-shocked cells were obtained through culture in tryptic soy broth (TSB) with a final pH of 4.8, which was adjusted by hydrochloric, lactic, or citric acid and subsequently inoculated in orange juice at 4 °C for 30 days. No significant differences (p > 0.05) in survival in orange juice were observed between the serotypes O157:H7 and non-O157:H7 for acid-shocked experiments. After slow acidification, where the cells were cultured in TSB supplemented with glucose 1% (TSB + G), a significant increase (p < 0.05) in survival was observed for all strains evaluated. The D-values (radiation dose (J/cm2) necessary to decrease the microbial population by 90%) were determined as the inverse of the slopes of the regressions (k) obtained by plotting log (N/N0). The results show that among the strains tested, E. coli O157:H7 (303/00) and O26:H11 were the most resistant and sensitive strains, respectively. According to our results, the method of acid adaptation contributes to increasing the UV resistance for most of the strains tested.
Collapse
Affiliation(s)
- Juan M Oteiza
- Laboratorio de Microbiología de Los Alimentos, Centro de Investigación y Asistencia Técnica a La Industria (CIATI A.C.), Centenario, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leonardo do Prado-Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Magdevis Y R Caturla
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Patricia A Barril
- Laboratorio de Microbiología de Los Alimentos, Centro de Investigación y Asistencia Técnica a La Industria (CIATI A.C.), Centenario, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leda Giannuzzi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-La Plata, Facultad Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Chung D, Cho TJ, Rhee MS. Citrus fruit extracts with carvacrol and thymol eliminated 7-log acid-adapted Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes: A potential of effective natural antibacterial agents. Food Res Int 2018; 107:578-588. [PMID: 29580522 DOI: 10.1016/j.foodres.2018.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/03/2018] [Accepted: 03/04/2018] [Indexed: 01/21/2023]
Abstract
Despite the widespread belief that citrus fruit extracts (CFEs) are microbiologically safe due to their acidity, limited bactericidal effect results in low applicability as antibacterial agent and outbreaks occurred by acid-adapted pathogens. Here, we examined the antibacterial effects of CFEs [lime (Citrus medica), lemon (Citrus limon), calamansi (Citrus microcarpa)] combined with essential oil components (EOCs; carvacrol and thymol) against non-acid-adapted/acid-adapted Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes under 22 °C for 5 min. CFEs (<20%) alone or small amounts of EOCs (2.0 mM; 0.032%) alone could not inactivate the target bacteria effectively. However, combined treatments exhibited marked synergy: CFE + EOCs eliminated all the bacteria (>6.9 log CFU/ml). Among the CFEs tested, the highest synergism was shown by calamansi, an exotic citrus fruit previously unrecognized as an antibacterial agent. Although acid-adaptation improved bacterial survival, calamansi (<20%) + EOCs (<0.032%) completely inactivated even the most resistant pathogen (E. coli O157:H7). Validation test also showed that all tested commercial juice products also eliminated acid-adapted pathogens when used with EOCs. Physicochemical analysis of tested CFEs (pH measurement and HPLC analysis of components) revealed that low pH and flavanone (hesperidin) did not contribute to the synergistic bactericidal effects. Rather, the high citric acid content is likely to contribute to the strong synergistic effect with EOCs by damaging susceptible bacterial membranes. Sensory scores for CFEs were not altered by addition of EOCs at concentrations up to 1.5 mM. This study provides new insight into the utility of CFEs with EOCs to improve not only the microbiological safety of food products containing CFEs but also their applicability as natural antibacterial complex.
Collapse
Affiliation(s)
- Doohyun Chung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Kim GH, Fratamico P, Breidt F, Oh DH. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli
acid adapted in pineapple juice and exposed to synthetic gastric fluid. J Appl Microbiol 2016; 121:1416-1426. [DOI: 10.1111/jam.13223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
- G.-H. Kim
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon Gangwon South Korea
- USDA-ARS Eastern Regional Research Center; Wyndmoor PA USA
| | - P. Fratamico
- USDA-ARS Eastern Regional Research Center; Wyndmoor PA USA
| | - F. Breidt
- USDA-ARS Food Science Research Unit; Department of Food; Bioprocessing and Nutrition Sciences; North Carolina State University; Raleigh NC USA
| | - D.-H. Oh
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon Gangwon South Korea
| |
Collapse
|
5
|
Smith JL, Fratamico PM. Effect of stress on non-O157 Shiga toxin-producing Escherichia coli. J Food Prot 2012; 75:2241-50. [PMID: 23212025 DOI: 10.4315/0362-028x.jfp-12-255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC) strains have emerged as important foodborne pathogens worldwide. Non-O157 STEC serogroups O26, O45, O103, O111, O121, and O145 have been declared as adulterants in beef by the U. S. Department of Agriculture Food Safety and Inspection Service. While documentation is limited, treatments including heat and acid that have been shown to inactivate E. coli O157:H7 will likely also destroy non-O157 STEC; however, non-O157 STEC strains show variability in their responses to stress. It has been shown that non-O157 STEC may survive in fermented sausages and cheeses, and treatments such as high pressure may be necessary to eliminate non-O157 STEC from these products. The mechanisms used by non-O157 STEC to resist acid environments are similar to those used by O157:H7 strains and include the acid tolerance response, the oxidative system, and the glutamate and arginine decarboxylase systems. However, one study demonstrated that some non-O157 STEC strains utilize a chaperone-based acid stress response (HdeA and HdeB) to combat acidic conditions, which is lacking in E. coli O157:H7. Genomic studies suggest that while non-O157 STEC can cause diseases similar to those caused by E. coli O157:H7, O157 and non-O157 STECs have different evolutionary histories. Non-O157 STECs are a heterogeneous group of organisms, and there is currently a limited amount of information on their virulence, fitness, and stress responses, rendering it difficult to draw firm conclusions on their behavior when exposed to stress in the environment, in food, and during processing.
Collapse
Affiliation(s)
- James L Smith
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | |
Collapse
|
6
|
GLASS KATHLEENA, KASPAR CHARLESW, SINDELAR JEFFREYJ, MILKOWSKI ANDREWL, LOTZ BRIANM, KANG JIHUN, FAITH NANCYG, ENACHE ELENA, KATAOKA AI, HENRY CRAIG. Validation of Pepperoni Process for Control of Shiga Toxin–Producing Escherichia coli. J Food Prot 2012; 75:838-46. [DOI: 10.4315/0362-028x.jfp-11-486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to compare the survival of non-O157 Shiga toxin–producing Escherichia coli (STEC) with E. coli O157:H7 during pepperoni production. Pepperoni batter was inoculated with 7 log CFU/g of a seven-strain STEC mixture, including strains of serotypes O26, O45, O103, O111, O121, O145, and O157. Sausages were fermented to pH ≤4.8, heated at 53.3°C for 1 h, and dried for up to 20 days. STEC strains were enumerated at designated intervals on sorbitol MacConkey (SMAC) and Rainbow (RA) agars; enrichments were completed in modified EC (mEC) broth and nonselective tryptic soy broth (TSB). When plated on SMAC, total E. coli populations decreased 2.6 to 3.5 log after the 1-h heating step at 53.3°C, and a 4.9- to 5-log reduction was observed after 7 days of drying. RA was more sensitive in recovering survivors; log reductions on it were 1.9 to 2.6, 3.8 to 4.2, and 4.6 to 5.3 at the end of cook, and at day 7 and day 14 of drying, respectively. When numbers were less than the limit of detection by direct plating on days 14 and 20 of drying (representing a 5-log kill), no more than one of three samples in each experiment was positive by enrichment with mEC broth; however, STEC strains were recovered in TSB enrichment. Freezing the 7-day dried sausage for 2 to 3 weeks generated an additional 1- to 1.5-log kill. Confirmation by PCR revealed that O103 and O157 had the greatest survival during pepperoni productions, but all serotypes except O111 and O121 were occasionally recovered during drying. This study suggests that non-O157 STEC strains have comparable or less ability than E. coli O157 to survive the processing steps involved in the manufacture of pepperoni. Processes suitable for control of E. coli O157 will similarly inactivate the other STEC strains tested in this study.
Collapse
Affiliation(s)
- KATHLEEN A. GLASS
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - CHARLES W. KASPAR
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - JEFFREY J. SINDELAR
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - ANDREW L. MILKOWSKI
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - BRIAN M. LOTZ
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - JIHUN KANG
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - NANCY G. FAITH
- 1University of Wisconsin-Madison, Food Research Institute, 1550 Linden Drive, Madison, Wisconsin 53706
| | - ELENA ENACHE
- 2Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - AI KATAOKA
- 2Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - CRAIG HENRY
- 2Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| |
Collapse
|