1
|
Sudarsan A, Keener KM. Inactivation of Salmonella enterica serovars and Escherichia coli O157:H7 surrogate from baby spinach leaves using high voltage atmospheric cold plasma (HVACP). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
Responses of Escherichia coli and Listeria monocytogenes to ozone treatment on non-host tomato: Efficacy of intervention and evidence of induced acclimation. PLoS One 2021; 16:e0256324. [PMID: 34710139 PMCID: PMC8553054 DOI: 10.1371/journal.pone.0256324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Because of the continuous rise of foodborne illnesses caused by the consumption of raw fruits and vegetables, effective post-harvest anti-microbial strategies are necessary. The aim of this study was to evaluate the anti-microbial efficacy of ozone (O3) against two common causes of fresh produce contamination, the Gram-negative Escherichia coli O157:H7 and Gram-positive Listeria monocytogenes, and to relate its effects to potential mechanisms of xenobiosis by transcriptional network modeling. The study on non-host tomato environment correlated the dose × time aspects of xenobiosis by examining the correlation between bacterial survival in terms of log-reduction and defense responses at the level of gene expression. In E. coli, low (1 μg O3/g of fruit) and moderate (2 μg O3/g of fruit) doses caused insignificant reduction in survival, while high dose (3 μg/g of fruit) caused significant reduction in survival in a time-dependent manner. In L. monocytogenes, moderate dose caused significant reduction even with short-duration exposure. Distinct responses to O3 xenobiosis between E. coli and L. monocytogenes are likely related to differences in membrane and cytoplasmic structure and components. Transcriptome profiling by RNA-Seq showed that primary defenses in E. coli were attenuated after exposure to a low dose, while the responses at moderate dose were characterized by massive upregulation of pathogenesis and stress-related genes, which implied the activation of defense responses. More genes were downregulated during the first hour at high dose, with a large number of such genes getting significantly upregulated after 2 hr and 3 hr. This trend suggests that prolonged exposure led to potential adaptation. In contrast, massive downregulation of genes was observed in L. monocytogenes regardless of dose and exposure duration, implying a mechanism of defense distinct from that of E. coli. The nature of bacterial responses revealed by this study should guide the selection of xenobiotic agents for eliminating bacterial contamination on fresh produce without overlooking the potential risks of adaptation.
Collapse
|
3
|
Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4950-4992. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
The outbreaks linked to foodborne illnesses in low-moisture foods are frequently reported due to the occurrence of pathogenic microorganisms such as Salmonella Spp. Bacillus cereus, Clostridium spp., Cronobacter sakazakii, Escherichia coli, and Staphylococcus aureus. The ability of the pathogens to withstand the dry conditions and to develop resistance to heat is regarded as the major concern for the food industry dealing with low-moisture foods. In this regard, the present review is aimed to discuss the importance and the use of novel thermal and nonthermal technologies such as radiofrequency, steam pasteurization, plasma, and gaseous technologies for decontamination of foodborne pathogens in low-moisture foods and their microbial inactivation mechanisms. The review also summarizes the various sources of contamination and the factors influencing the survival and thermal resistance of pathogenic microorganisms in low-moisture foods. The literature survey indicated that the nonthermal techniques such as CO2 , high-pressure processing, and so on, may not offer effective microbial inactivation in low-moisture foods due to their insufficient moisture content. On the other hand, gases can penetrate deep inside the commodities and pores due to their higher diffusion properties and are regarded to have an advantage over thermal and other nonthermal processes. Further research is required to evaluate newer intervention strategies and combination treatments to enhance the microbial inactivation in low-moisture foods without significantly altering their organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tushar Verma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
|
5
|
Sarron E, Gadonna-Widehem P, Aussenac T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods 2021; 10:605. [PMID: 33809297 PMCID: PMC8000956 DOI: 10.3390/foods10030605] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/23/2023] Open
Abstract
Ozone is recognized as an antimicrobial agent for vegetables storage, washing, and processing. This strong disinfectant is now being used in the food industry. In this review, the chemical and physical properties of ozone, its generation, and factors affecting ozone processing efficiency were explained as well as recent regulatory developments in the food industry. By then selecting three vegetables, we show that ozone avoids and controls biological growth on vegetables, keeping their attractive appearance and sensorial qualities, assuring nutritional characteristics' retention and maintaining and increasing the shelf-life. In liquid solution, ozone can be used to disinfect processing water and vegetables, and in gaseous form, ozone helps to sanitize and preserve vegetables during storage. The multifunctionality of ozone makes it a promising food processing agent. However, if ozone is improperly used, it causes some deleterious effects on products, such as losses in their sensory quality. For an effective and a safe use of ozone, specific treatment conditions should be determined for all kinds of vegetables. In a last step, we propose highlighting the different essential characteristics of ozone treatment in order to internationally harmonize the data relating to the treatments carried-out.
Collapse
Affiliation(s)
| | | | - Thierry Aussenac
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (E.S.); (P.G.-W.)
| |
Collapse
|
6
|
Bigi F, Haghighi H, Quartieri A, De Leo R, Pulvirenti A. Impact of low‐dose gaseous ozone treatment to reduce the growth of in vitro broth cultures of foodborne pathogenic/spoilage bacteria in a food storage cold chamber. J Food Saf 2021. [DOI: 10.1111/jfs.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Bigi
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Hossein Haghighi
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Andrea Quartieri
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Riccardo De Leo
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Andrea Pulvirenti
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
- Interdepartmental Research Centre BIOGEST‐SITEIA University of Modena and Reggio Emilia Reggio Emilia Italy
| |
Collapse
|
7
|
Fan X, Song Y. Advanced Oxidation Process as a Postharvest Decontamination Technology To Improve Microbial Safety of Fresh Produce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12916-12926. [PMID: 32369356 DOI: 10.1021/acs.jafc.0c01381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fresh produce is frequently associated with outbreaks of foodborne diseases; thus, there is a need to develop effective intervention technologies and antimicrobial treatments to improve the microbial safety of fresh produce. Washing with chemical sanitizers, commonly used by the industry, is limited in its effectiveness and is viewed as a possible cross-contamination opportunity. This review discuses the advanced oxidation process (AOP), which involves generating highly reactive hydroxyl radicals to inactivate human pathogens. Ionizing irradiation, ultraviolet (UV) light, and cold plasma can be regarded as AOP; however, AOPs employing combinations of UV, H2O2, cold plasma, and ozone may be more promising because higher amounts of hydroxyl radicals are produced in comparison to the individual treatments and the combinative AOPs may be more consumer friendly than ionizing irradiation. When applied as a gaseous/aerosolized treatment, AOPs may have advantages over immersion treatments, considering the reactivity of hydroxyl radicals and presence of organic materials in wash water. Gaseous/aerosolized AOPs achieve up to 5 log reductions of pathogenic bacteria on fresh produce compared to reductions of 1-2 logs with aqueous sanitizers. Further research needs to be conducted on specific AOPs before being considered for commercialization, such as reduced formation of undesirable chemical byproducts, impact on quality, and scaled up studies.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| | - Yuanyuan Song
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
8
|
Song Y, Annous BA, Fan X. Cold plasma-activated hydrogen peroxide aerosol on populations of Salmonella Typhimurium and Listeria innocua and quality changes of apple, tomato and cantaloupe during storage - A pilot scale study. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Fan X, Wang W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit Rev Food Sci Nutr 2020; 62:362-382. [DOI: 10.1080/10408398.2020.1816892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Wenli Wang
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Song Y, Fan X. Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella Typhimurium and Listeria innocua on grape tomatoes, apples, cantaloupe and romaine lettuce. Food Microbiol 2020; 87:103391. [PMID: 31948632 DOI: 10.1016/j.fm.2019.103391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
In the present study, we investigated whether cold plasma activation affected the efficacy of aerosolized hydrogen peroxide against S. Typhimurium and L. innocua. Stem scars and smooth surfaces of grape tomatoes, surfaces of Granny Smith apples and Romaine lettuce (both midrib and upper leaves) and cantaloupe rinds were inoculated with two-strain cocktails of S. Typhimurium and 3-strain cocktails of L. innocua. The inoculated samples were treated with 7.8% aerosolized H2O2 with and without cold plasma for various times. For all fresh produce items and surfaces, cold plasma significantly (P < 0.05) improved the efficacy of aerosolized H2O2 against Salmonella and L. innocua. Without cold plasma activation, H2O2 aerosols only reduced populations of Salmonella by 1.54-3.17 log CFU/piece while H2O2 with cold plasma achieved 2.35-5.50 log CFU/piece reductions of Salmonella. L. innocua was more sensitive to the cold plasma-activated H2O2 than Salmonella. Cold plasma activated H2O2 aerosols reduced Listeria populations by more than 5 log CFU/piece on all types and surfaces of fresh produce except for the tomato stem scar area. Without cold plasma, the reductions by H2O2 were only 1.35-3.77 log CFU/piece. Overall, our results demonstrated that cold plasma activation significantly enhanced the efficacy of H2O2 mist against bacteria on fresh produce.
Collapse
Affiliation(s)
- Yuanyuan Song
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
11
|
Feizollahi E, Misra NN, Roopesh MS. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 2020; 61:666-689. [PMID: 32208859 DOI: 10.1080/10408398.2020.1743967] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, NS, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Fan X, Sokorai KJB, Gurtler JB. Advanced oxidation process for the inactivation of Salmonella typhimurium on tomatoes by combination of gaseous ozone and aerosolized hydrogen peroxide. Int J Food Microbiol 2019; 312:108387. [PMID: 31669763 DOI: 10.1016/j.ijfoodmicro.2019.108387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Fresh produce-associated outbreaks of foodborne illnesses continue to occur every year in the U.S., suggesting limitations of current practices and the need for effective intervention technologies. Advanced oxidation process involves production of hydrogen radicals, which are the strongest oxidant. The objective of the present study was to evaluate the effectiveness of advanced oxidation process by combining gaseous ozone and aerosolized hydrogen peroxide. Grape tomatoes were inoculated with a 2-strain cocktail of Salmonella typhimurium on both stem scar and smooth surface. Gaseous ozone (800 and 1600 ppm) and aerosolized hydrogen peroxide (2.5, 5 and 10%) were separately or simultaneously introduced into a treatment chamber where the inoculated tomatoes were placed. During the 30 min treatments, hydrogen peroxide was aerosolized using an atomizer operated in two modes: continuously or 15 s on/50 s off. After the treatments, surviving Salmonella on the smooth surface and stem scar were enumerated. Results showed that ozone alone reduced Salmonella populations by <0.6 log CFU/fruit on both the smooth surface and the stem scar area, and aerosolized hydrogen peroxide alone reduced the populations by up to 2.1 log CFU/fruit on the smooth surface and 0.8 log CFU/fruit on stem scar area. However, the combination treatments reduced the populations by up to 5.2 log CFU/fruit on smooth surface and 4.2 log CFU/fruit on the stem scar. Overall, our results demonstrate that gaseous ozone and aerosolized hydrogen peroxide have synergistic effects on the reduction of Salmonella populations on tomatoes.
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, 4Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Kimberly J B Sokorai
- U.S. Department of Agriculture, 4Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Joshua B Gurtler
- U.S. Department of Agriculture, 4Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
13
|
Wang L, Fan X, Sokorai K, Sites J. Quality deterioration of grape tomato fruit during storage after treatments with gaseous ozone at conditions that significantly reduced populations of Salmonella on stem scar and smooth surface. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Fan X, Gurtler JB, Sokorai KJB. Tomato type and post-treatment water rinse affect efficacy of acid washes against Salmonella enterica inoculated on stem scars of tomatoes and product quality. Int J Food Microbiol 2018; 280:57-65. [PMID: 29783044 DOI: 10.1016/j.ijfoodmicro.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
A study was conducted to evaluate the effects of post-treatment rinsing with water on the inactivation efficacy of acid treatments against Salmonella inoculated onto stem scar areas of two types of tomatoes. In addition, impact on fruit quality was investigated during 21 days post-treatment storage at 10 °C. A four-strain cocktail of Salmonella enterica (S. Montevideo, S. Newport, S. Saintpaul, and S. Typhimurium) was inoculated onto stem scar areas of grape and large round tomatoes. The inoculated fruits were then treated for 2 min with the following solutions: water, 2% lactic acid +2% acetic acid +2% levulinic acid, 1.7% lactic acid +1.7% acetic acid +1.7% levulinic acid, and 3% lactic acid +3% acetic acid. After treatments, half of the fruits were rinsed with water while another half were not rinsed. Non-inoculated grape tomatoes for quality analysis were treated with the same solutions with and without subsequent water rinse. Results demonstrated that the acid combinations reduced populations of Salmonella enterica on the stem scar area of grape tomatoes by 1.52-1.90 log CFU/fruit, compared with the non-treated control while water wash and rinse removed the bacterium by only 0.23-0.30 log CFU/fruit. On the stem scar of large round tomatoes, the same acid treatments achieved 3.54 log CFU/fruit reduction of the pathogen. The varying response to the acid washes between grape and large round tomatoes seems to be related to the differences in surface characteristics of stem scar areas observed with SEM. Rinsing with water after acid combination treatments did not significantly affect the efficacy of the treatments in either grape or large round tomatoes. Acidic off-odor was detected on fruits treated with acid combination without water rinse 1 day after treatment while water rinse eliminated the off-odor. The acid treatments with and without water rinse did not consistently affect appearance, color, firmness, or lycopene or ascorbic acid contents of tomatoes during 21-days storage at 10 °C. Considering the similarity in antimicrobial efficacy between the fruits with and without water rinse following acid treatments, and the elimination of acidic odor by water rinse, fruits should be rinsed with water after acid treatments. Overall, our results demonstrated that the acids were more effective in inactivating Salmonella on large round tomatoes than on grape tomatoes, and water rinses following acid treatments eliminated the acidic odor without affecting the efficacy of the acids against Salmonella.
Collapse
Affiliation(s)
- Xuetong Fan
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, United States.
| | - Joshua B Gurtler
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, United States
| | - Kimberly J B Sokorai
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, United States
| |
Collapse
|
15
|
Gurtler JB, Harlee NA, Smelser AM, Schneider KR. Salmonella enterica Contamination of Market Fresh Tomatoes: A Review. J Food Prot 2018; 81:1193-1213. [PMID: 29965780 DOI: 10.4315/0362-028x.jfp-17-395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella contamination associated with market fresh tomatoes has been problematic for the industry and consumers. A number of outbreaks have occurred, and dollar losses for the industry, including indirect collateral impact to agriculturally connected communities, have run into the hundreds of millions of dollars. This review covers these issues and an array of problems and potential solutions surrounding Salmonella contamination in tomatoes. Some other areas discussed include (i) the use of case-control studies and DNA fingerprinting to identify sources of contamination, (ii) the predilection for contamination based on Salmonella serovar and tomato cultivar, (iii) internalization, survival, and growth of Salmonella in or on tomatoes and the tomato plant, in biofilms, and in niches ancillary to tomato production and processing, (iv) the prevalence of Salmonella in tomatoes, especially in endogenous regions, and potential sources of contamination, and (v) effective and experimental means of decontaminating Salmonella from the surface and stem scar regions of the tomato. Future research should be directed in many of the areas discussed in this review, including determining and eliminating sources of contamination and targeting regions of the country where Salmonella is endemic and contamination is most likely to occur. Agriculturalists, horticulturalists, microbiologists, and epidemiologists may make the largest impact by working together to solve other unanswered questions regarding tomatoes and Salmonella contamination.
Collapse
Affiliation(s)
- Joshua B Gurtler
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551 (ORCID: http://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Nia A Harlee
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551 (ORCID: http://orcid.org/0000-0001-5844-7794 [J.B.G.]).,2 Department of Culinary Arts and Food Science, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104
| | - Amanda M Smelser
- 3 Graduate School of Arts and Sciences, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, North Carolina 27157; and
| | - Keith R Schneider
- 4 Food Science and Human Nutrition Department, University of Florida, 572 Newell Drive, Building 475, Gainesville, Florida 32611, USA
| |
Collapse
|
16
|
In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res Int 2018; 108:378-386. [DOI: 10.1016/j.foodres.2018.03.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/19/2022]
|
17
|
Sheng L, Hanrahan I, Sun X, Taylor MH, Mendoza M, Zhu MJ. Survival of Listeria innocua on Fuji apples under commercial cold storage with or without low dose continuous ozone gaseous. Food Microbiol 2018; 76:21-28. [PMID: 30166144 DOI: 10.1016/j.fm.2018.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 11/24/2022]
Abstract
This study evaluated the fate of Listeria innocua, a non-pathogenic species closely related to Listeria monocytogenes, on Fuji apple fruit surfaces during commercial cold storage with and without continuous low doses of gaseous ozone. Unwaxed Fuji apples of commercially acceptable maturity were inoculated with 6.0-7.0 Log10 CFU L. innocua/apple, and subjected to refrigerated air (RA, 33 °F), controlled atmosphere (CA, 33 °F, 2% O2, 1% CO2), or CA with low doses of ozone gas (50.0 -87.0 ppb ) storage in a commercial facility for 30 weeks. A set of uninoculated apples was simultaneously subjected to the above storage conditions for total plate count and yeasts and molds enumeration. L. innocua survival under RA and CA storage was similar, which led to 2.5-3.0 Log10 CFU/apple reduction during storage. Continuous gaseous ozone application decreased L. innocua population on Fuji apples to ∼1.0 Log10 CFU/apple after 30-week storage, and suppressed apple native flora. CA storage delayed apple fruit ripening through reduction of apple firmness and titratable acidity loss, and low dose gaseous ozone application had no negative influence on apple visual quality, including both external and internal disorders. In summary, L. innocua decreased on Fuji apple surfaces during commercial long-term RA and CA storage. Ozone gas has the potential to be used as a supplemental intervention method to control Listeria spp. and to ensure fresh apple safety.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, 99164, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, United States
| | - Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, United States
| | - Michael H Taylor
- School of Food Science, Washington State University, Pullman, WA, 99164, United States
| | - Manoella Mendoza
- Washington Tree Fruit Research Commission, Wenatchee, WA, 98801, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
18
|
Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res Int 2018; 106:509-521. [DOI: 10.1016/j.foodres.2018.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/01/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
|
19
|
Murray K, Wu F, Shi J, Jun Xue S, Warriner K. Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx027] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Jiang Y, Sokorai K, Pyrgiotakis G, Demokritou P, Li X, Mukhopadhyay S, Jin T, Fan X. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. Int J Food Microbiol 2017; 249:53-60. [PMID: 28319798 DOI: 10.1016/j.ijfoodmicro.2017.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomatoes, baby spinach leaves and cantaloupes. Stem scars and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherichia coli O157:H7, Salmonella Typhimurium and Listeria innocua, were treated for 45s followed by additional 30min dwell time with hydrogen peroxide (7.8%) aerosols activated by atmospheric cold plasma. Non-inoculated samples were used to study the effects on quality and native microflora populations. Results showed that two ranges of hydrogen peroxide droplets with mean diameters of 40nm and 3.0μm were introduced into the treatment chamber. The aerosolized hydrogen peroxide treatment reduced S. Typhimurium populations by 5.0logCFU/piece, and E. coli O157:H7 and L. innocua populations from initial levels of 2.9 and 6.3logCFU/piece, respectively, to non-detectable levels (detection limit 0.6logCFU/piece) on the smooth surface of tomatoes. However, on the stem scar area of tomatoes, the reductions of E. coli O157:H7, S. Typhimurium, and L. innocua were only 1.0, 1.3, and 1.3 log, respectively. On the cantaloupe rind, the treatment reduced populations of E. coli O157:H7, S. Typhimurium and L. innocua by 4.9, 1.3, and 3.0logCFU/piece, respectively. Under the same conditions, reductions achieved on spinach leaves were 1.5, 4.2 and 4.0 log for E. coli O157:H7, S. Typhimurium and L. innocua, respectively. The treatments also significantly reduced native aerobic plate count, and yeasts and mold count of tomato fruits and spinach leaves. Furthermore, firmness and color of the samples were not significantly affected by the aerosolized hydrogen peroxide. Overall, our results showed that the efficacy of aerosolized hydrogen peroxide depended on type of inoculated bacteria, location of bacteria and type of produce items, and aerosolized hydrogen peroxide could potentially be used to sanitize fresh fruits and vegetables.
Collapse
Affiliation(s)
- Yunbin Jiang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Kimberly Sokorai
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Sudarsan Mukhopadhyay
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Tony Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
21
|
Jiang Y, Fan X, Li X, Gurtler JB, Mukhopadhyay S, Jin T. Inactivation of Salmonella Typhimurium and quality preservation of cherry tomatoes by in-package aerosolization of antimicrobials. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Min SC, Roh SH, Niemira BA, Sites JE, Boyd G, Lacombe A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int J Food Microbiol 2016; 237:114-120. [PMID: 27562348 DOI: 10.1016/j.ijfoodmicro.2016.08.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
The present study investigated the effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus (TV) on Romaine lettuce, assessing the influences of moisture vaporization, modified atmospheric packaging (MAP), and post-treatment storage on the inactivation of these pathogens. Romaine lettuce was inoculated with E. coli O157:H7, Salmonella, L. monocytogenes (~6logCFU/g lettuce), or TV (~2logPFU/g lettuce) and packaged in either a Petri dish (diameter: 150mm, height: 15mm) or a Nylon/polyethylene pouch (152×254mm) with and without moisture vaporization. Additionally, a subset of pouch-packaged leaves was flushed with O2 at 5% or 10% (balance N2). All of the packaged lettuce samples were treated with DACP at 34.8kV for 5min and then analyzed either immediately or following post-treatment storage for 24h at 4°C to assess the inhibition of microorganisms. DACP treatment inhibited E. coli O157:H7, Salmonella, L. monocytogenes, and TV by 1.1±0.4, 0.4±0.3, 1.0±0.5logCFU/g, and 1.3±0.1logPFU/g, respectively, without environmental modifications of moisture or gas in the packages. The inhibition of the bacteria was not significantly affected by packaging type or moisture vaporization (p>0.05) but a reduced-oxygen MAP gas composition attenuated the inhibition rates of E. coli O157:H7 and TV. L. monocytogenes continued to decline by an additional 0.6logCFU/g in post-treatment cold storage for 24h. Additionally, both rigid and flexible conventional plastic packages appear to be suitable for the in-package decontamination of lettuce with DACP.
Collapse
Affiliation(s)
- Sea C Min
- United States Department of Agriculture, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, PA 19038, USA; Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 139-774, Republic of Korea
| | - Si Hyeon Roh
- United States Department of Agriculture, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, PA 19038, USA; Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 139-774, Republic of Korea
| | - Brendan A Niemira
- United States Department of Agriculture, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Joseph E Sites
- United States Department of Agriculture, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Glenn Boyd
- United States Department of Agriculture, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Alison Lacombe
- National College of Natural Medicine, 014 SE Porter St., Portland, OR 97201, USA
| |
Collapse
|
23
|
Ragni L, Berardinelli A, Iaccheri E, Gozzi G, Cevoli C, Vannini L. Influence of the electrode material on the decontamination efficacy of dielectric barrier discharge gas plasma treatments towards Listeria monocytogenes and Escherichia coli. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
|
25
|
Wu S, Lu M, Wang S. Effect of oligosaccharides derived from Laminaria japonica-incorporated pullulan coatings on preservation of cherry tomatoes. Food Chem 2016; 199:296-300. [PMID: 26775974 DOI: 10.1016/j.foodchem.2015.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 12/08/2015] [Indexed: 11/25/2022]
Abstract
Laminaria japonica-derived oligosaccharides (LJOs) exhibit antibacterial and antioxidant activities, and pullulan is a food thickener that can form impermeable films. The ability of pullulan coatings with various LJO concentrations (1% pullulan+0.1%, 0.2% or 0.3% LJOs) to preserve cherry tomatoes during storage at room temperature was investigated. The LJO-incorporated pullulan coatings were found to effectively reduce respiratory intensity, vitamin C loss, weight loss and softening, as well as to increase the amount of titratable acid and the overall likeness of fruit compared with the control. These effects were observed to be dose-dependent. Therefore, using LJO-incorporated pullulan coatings can extend the shelf life of cherry tomatoes.
Collapse
Affiliation(s)
- Shengjun Wu
- Jiangsu Marine Resources Development Research Institute, Lianyungang, Jiangsu 222005, China; School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Mingsheng Lu
- Jiangsu Marine Resources Development Research Institute, Lianyungang, Jiangsu 222005, China; School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Marine Resources Development Research Institute, Lianyungang, Jiangsu 222005, China; School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
26
|
Concha-Meyer A, Eifert JD, Williams RC, Marcy JE, Welbaum GE. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2015; 2015:164143. [PMID: 26904657 PMCID: PMC4745484 DOI: 10.1155/2015/164143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/09/2014] [Indexed: 11/21/2022]
Abstract
Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control); 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS)); and ozone gas (O3) 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90-95%). Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.
Collapse
Affiliation(s)
- Anibal Concha-Meyer
- Food Science and Technology Department, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA
- Centro de Estudios en Alimentos Procesados (CEAP), Avenida San Miguel 3425, 3480137 Talca, Chile
| | - Joseph D. Eifert
- Food Science and Technology Department, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Robert C. Williams
- Food Science and Technology Department, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Joseph E. Marcy
- Food Science and Technology Department, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Gregory E. Welbaum
- Horticulture Department, Virginia Tech, 1880 Pratt Drive, Research Building XV, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Yun J, Fan X, Li X, Jin TZ, Jia X, Mattheis JP. Natural surface coating to inactivate Salmonella enterica serovar Typhimurium and maintain quality of cherry tomatoes. Int J Food Microbiol 2015; 193:59-67. [DOI: 10.1016/j.ijfoodmicro.2014.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022]
|
28
|
Ziuzina D, Patil S, Cullen P, Keener K, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 2014; 42:109-16. [DOI: 10.1016/j.fm.2014.02.007] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
29
|
Concha-Meyer A, Eifert J, Williams R, Marcy J, Welbaum G. Survival of Listeria monocytogenes on fresh blueberries (Vaccinium corymbosum) stored under controlled atmosphere and ozone. J Food Prot 2014; 77:832-6. [PMID: 24780341 DOI: 10.4315/0362-028x.jfp-13-441] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen that represents a high risk for consumers because it can grow under refrigeration conditions and can also develop acid tolerance. Fresh blueberries are hand-picked, packed, and transported under refrigeration without receiving a microbial inactivation treatment. The aim of this work was to study the survival of L. monocytogenes in fresh highbush blueberries stored at 4 or 12 °C under different controlled atmosphere conditions, including air (control); 5% O2, 15% CO2, 80% N2 (controlled atmosphere storage [CAS]); or ozone gas (O3), 4 ppm at 4 °C or 2.5 ppm at 12 °C, at high relative humidity (90 to 95%) for a total of 10 days. Fresh blueberries inside a plastic clamshell were spot inoculated with the bacteria and were stored at 4 or 12 °C in isolated cabinets under air, CAS, and O3 atmospheric conditions. Samples were evaluated on days 0, 1, 4, 7, and 10 for microbial growth using modified Oxford agar. CAS did not delay or inhibit L. monocytogenes growth in fresh blueberries after 10 days. O3 achieved 3- and 2-log reductions when compared with air treatment at 4 and 12 °C, respectively. Low concentrations of O3 together with proper refrigeration temperature can ensure product safety throughout transportation. O3 is a strong antimicrobial that safely decomposes to oxygen and water without leaving residues and can be used as an alternative method to prevent bacterial growth during a long transport period.
Collapse
Affiliation(s)
- Anibal Concha-Meyer
- Food Science and Technology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA; Centro de Estudios en Alimentos Procesados (CEAP), Avenida San Miguel # 3425, Talca 3480137, Chile
| | - Joseph Eifert
- Food Science and Technology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | - Robert Williams
- Food Science and Technology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Joseph Marcy
- Food Science and Technology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Gregory Welbaum
- Horticulture Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
30
|
Goodburn C, Wallace CA. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.12.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Yun J, Fan X, Li X. Inactivation of Salmonella enterica serovar Typhimurium and quality maintenance of cherry tomatoes treated with gaseous essential oils. J Food Sci 2013; 78:M458-64. [PMID: 23398191 DOI: 10.1111/1750-3841.12052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
The antimicrobial activity of the essential oils (EOs) from cinnamon bark, oregano, mustard, and of their major components cinnamaldehyde, carvacrol, and allyl isothiocyanate (AIT) was evaluated as a gaseous treatment to reduce Salmonella enterica serovar Typhimurium in vitro and on tomatoes. In vitro tests showed that mustard EO and AIT had the greatest inhibition of Salmonella, followed by cinnamon EO and cinnamaldehyde, while oregano and carvacrol showed the least inhibition. Scanning electron microscopy images of S. Typhimurium on tomatoes suggest that the EOs and their major components damaged the bacteria, and the damage was more obvious after posttreatment storage at 10 °C for 4 and 7 d. Salmonella on inoculated tomatoes was reduced by more than 5 log colony forming units (CFU)/g by mustard EO and AIT, by 4.56 and 3.79 log CFU/g following cinnamon EO and cinnamaldehyde treatments, respectively, and 1.54 and 3.37 log CFU/g after oregano EO and carvacrol treatments, respectively. Mustard EO and AIT induced discoloration, softening, and loss of the vitamin C and lycopene during 21 d of storage at 10 °C, while treatment with cinnamon EO and cinnamaldehyde did not result in significant changes in tomato quality. Tomatoes treated with oregano EO had better quality than nontreated samples after storage. Therefore, treatment with cinnamon and oregano EO and their major components appeared to be feasible for inactivation of Salmonella on tomatoes and maintaining quality.
Collapse
Affiliation(s)
- Juan Yun
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, P R China
| | | | | |
Collapse
|