1
|
Hernández-García E, Pacheco-Romeralo M, Zomeño P, Viscusi G, Malvano F, Gorrasi G, Torres-Giner S. Development and Characterization of Thermoformed Bilayer Trays of Paper and Renewable Succinic Acid Derived Biopolyester Blends and Their Application to Preserve Fresh Pasta. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103872. [PMID: 37241499 DOI: 10.3390/ma16103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The present study reports on the development by thermoforming of highly sustainable trays based on a bilayer structure composed of paper substrate and a film made of a blend of partially bio-based poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). The incorporation of the renewable succinic acid derived biopolyester blend film slightly improved the thermal resistance and tensile strength of paper, whereas its flexural ductility and puncture resistance were notably enhanced. Furthermore, in terms of barrier properties, the incorporation of this biopolymer blend film reduced the water and aroma vapor permeances of paper by two orders of magnitude, while it endowed the paper structure with intermediate oxygen barrier properties. The resultant thermoformed bilayer trays were, thereafter, originally applied to preserve non-thermally treated Italian artisanal fresh pasta, "fusilli calabresi" type, which was stored under refrigeration conditions for 3 weeks. Shelf-life evaluation showed that the application of the PBS-PBSA film on the paper substrate delayed color changes and mold growth for 1 week, as well as reduced drying of fresh pasta, resulting in acceptable physicochemical quality parameters within 9 days of storage. Lastly, overall migration studies performed with two food simulants demonstrated that the newly developed paper/PBS-PBSA trays are safe since these successfully comply with current legislation on plastic materials and articles intended to come into contact with food.
Collapse
Affiliation(s)
- Eva Hernández-García
- Research Institute of Food Engineering for Development (IIAD), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Pacheco-Romeralo
- Research Institute of Food Engineering for Development (IIAD), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Pedro Zomeño
- Packaging Technologies Department, AINIA, Calle Benjamín Franklin 5-11, 46980 Paterna, Spain
| | - Gianluca Viscusi
- Department of Industrial Engineering (DIIn), University of Salerno (UNISA), Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Francesca Malvano
- Department of Industrial Engineering (DIIn), University of Salerno (UNISA), Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering (DIIn), University of Salerno (UNISA), Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Sergio Torres-Giner
- Research Institute of Food Engineering for Development (IIAD), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
2
|
Marzano M, Calasso M, Caponio GR, Celano G, Fosso B, De Palma D, Vacca M, Notario E, Pesole G, De Leo F, De Angelis M. Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures. Front Microbiol 2022; 13:1003437. [PMID: 36406432 PMCID: PMC9666361 DOI: 10.3389/fmicb.2022.1003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial stability of fresh pasta depends on heat treatment, storage temperature, proper preservatives, and atmosphere packaging. This study aimed at improving the microbial quality, safety, and shelf life of fresh pasta using modified atmosphere composition and packaging with or without the addition of bioprotective cultures (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium spp., and Bacillus coagulans) into semolina. Three fresh pasta variants were made using (i) the traditional protocol (control), MAP (20:80 CO2:N2), and barrier packaging, (ii) the experimental MAP (40:60 CO2:N2) and barrier packaging, and (iii) the experimental MAP, barrier packaging, and bioprotective cultures. Their effects on physicochemical properties (i.e., content on macro elements, water activity, headspace O2, CO2 concentrations, and mycotoxins), microbiological patterns, protein, and volatile organic compounds (VOC) were investigated at the beginning and the end of the actual or extended shelf-life through traditional and multi-omics approaches. We showed that the gas composition and properties of the packaging material tested in the experimental MAP system, with or without bioprotective cultures, positively affect features of fresh pasta avoiding changes in their main chemical properties, allowing for a storage longer than 120 days under refrigerated conditions. These results support that, although bioprotective cultures were not all able to grow in tested conditions, they can control the spoilage and the associated food-borne microbiota in fresh pasta during storage by their antimicrobials and/or fermentation products synergically. The VOC profiling, based on gas-chromatography mass-spectrometry (GC-MS), highlighted significant differences affected by the different manufacturing and packaging of samples. Therefore, the use of the proposed MAP system and the addition of bioprotective cultures can be considered an industrial helpful strategy to reduce the quality loss during refrigerated storage and to increase the shelf life of fresh pasta for additional 30 days by allowing the economic and environmental benefits spurring innovation in existing production models.
Collapse
Affiliation(s)
- Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria Calasso
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giusy Rita Caponio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy,Mirco Vacca,
| | - Elisabetta Notario
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Francesca De Leo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,*Correspondence: Francesca De Leo,
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
3
|
Extract from Broccoli Byproducts to Increase Fresh Filled Pasta Shelf Life. Foods 2019; 8:foods8120621. [PMID: 31783614 PMCID: PMC6963820 DOI: 10.3390/foods8120621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to evaluate the efficacy of extract from broccoli byproducts, as a green alternative to chemical preservation strategies for fresh filled pasta. In order to prove its effectiveness, three different percentages (10%, 15%, and 20% v/w) of extract were added to the filling of pasta. A shelf life test was carried out by monitoring microbiological and sensory quality. The content of phenolic compounds before and after in vitro digestion of pasta samples was also recorded. Results underlined that the addition of the natural extract helped to record a final shelf life of about 24 days, that was 18 days longer in respect to the control sample. Furthermore, results highlighted that the addition of byproducts extract to pasta also increased its phenolic content after in vitro digestion. Therefore, broccoli byproducts could be valorized for recording extracts that are able to prolong shelf life and increase the nutritional content of fresh filled pasta.
Collapse
|