1
|
Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites 2023; 13:metabo13020276. [PMID: 36837896 PMCID: PMC9966672 DOI: 10.3390/metabo13020276] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
An intense effort has been focused on new therapeutic approaches and the development of technologies for more efficient and rapid wound healing. The research for plants used for long time in traditional medicine in the treatment of wound has become a promising strategy to obtain drugs therapeutically useful in the acute and chronic wound management. In this context, Centella asiatica (Apiaceae) has been used to treat a variety of skin diseases, such as leprosy, lupus, varicose ulcers, eczema and psoriasis, in Asiatic traditional medicine for thousands of years. Studies have shown that Centella asiatica extracts (CAE) display activity in tissue regeneration, cell migration and wound repair process by promoting fibroblast proliferation and collagen synthesis. Preliminary findings have shown that the asiatic acid is one of the main active constituents of C. asiatica, directly associated with its healing activity. Thus, this study discusses aspects of the effects of Centella asiatica and its active component, asiatic acid, in different stages of the healing process of cutaneous wounds, including phytochemical and antimicrobial aspects that contribute to its therapeutic potential.
Collapse
|
2
|
Sousa FBM, Nolêto IRSG, Chaves LS, Pacheco G, Oliveira AP, Fonseca MMV, Medeiros JVR. A comprehensive review of therapeutic approaches available for the treatment of cholera. J Pharm Pharmacol 2020; 72:1715-1731. [DOI: 10.1111/jphp.13344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
The oral rehydration solution is the most efficient method to treat cholera; however, it does not interfere in the action mechanism of the main virulence factor produced by Vibrio cholerae, the cholera toxin (CT), and this disease still stands out as a problem for human health worldwide. This review aimed to describe therapeutic alternatives available in the literature, especially those related to the search for molecules acting upon the physiopathology of cholera.
Key findings
New molecules have offered a protection effect against diarrhoea induced by CT or even by infection from V. cholerae. The receptor regulator cystic fibrosis channel transmembrane (CFTR), monosialoganglioside (GM1), enkephalinase, AMP-activated protein kinase (AMPK), inhibitors of expression of virulence factors and activators of ADP-ribosylarginine hydrolase are the main therapeutic targets studied. Many of these molecules or extracts still present unclear action mechanisms.
Conclusions
Knowing therapeutic alternatives and their molecular mechanisms for the treatment of cholera could guide us to develop a new drug that could be used in combination with the rehydration solution.
Collapse
Affiliation(s)
- Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Isabela R S G Nolêto
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Leticia S Chaves
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Post-graduation Program in Biomedical Sciences, Federal University of Piauí, Parnaíba, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Mikhail M V Fonseca
- Institute of Higher Education of Vale do Parnaíba (IESVAP), Parnaíba, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|