1
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
2
|
Jalili A, Bagherifar R, Nokhodchi A, Conway B, Javadzadeh Y. Current Advances in Nanotechnology-Mediated Delivery of Herbal and Plant-Derived Medicines. Adv Pharm Bull 2023; 13:712-722. [PMID: 38022806 PMCID: PMC10676547 DOI: 10.34172/apb.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023] Open
Abstract
Phytomedicine has been used by humans since ancient times to treat a variety of diseases. However, herbal medicines face significant challenges, including poor water and lipid solubility and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it has been shown that nanotechnology-based drug delivery systems are appropriate to overcome the above-mentioned limitations. The present review study first discusses herbal medicines and the challenges involved in the formulation of these drugs. The different types of nano-based drug delivery systems used in herbal delivery and their potential to improve therapeutic efficacy are summarized, and common techniques for preparing nanocarriers used in herbal drug delivery are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 2010, as well as those that the FDA has approved, is presented.
Collapse
Affiliation(s)
- Amir Jalili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton BNI 9QJ, UK
- Lupin Research Center, Coral Springs, Florida, USA
| | - Barbara Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
3
|
Yousefi M, Andishmand H, Assadpour E, Barzegar A, Kharazmi MS, Jafari SM. Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances. Crit Rev Food Sci Nutr 2023; 64:6498-6511. [PMID: 36728840 DOI: 10.1080/10408398.2023.2170318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Todays, nanoliposomes (NLPs) are considered as one of the most efficient nanocarriers to deal with bacteria, practically in food products. These nanodelivery systems are able to be loaded with different bioactive compounds. The main aim of this review is investigating recent approaches (mostly from the years of 2018 to 2022) regarding development of nanoliposomal natural antibacterial compounds. In this regard, NLPs alone, combined with films, coatings, or fibers, and in coated forms are reviewed as advanced delivery systems of antibacterial substances. Moreover, a robust and comprehensive coverage of the morphological and physical properties of formulated NLPs as well as their interactions with antibacterial substances are discussed. The importance of NLPs to encapsulate antibacterial ingredients, advantages and drawbacks, antibacterial pathways of formulated NLPs, and comparison of them with pure antibacterial bioactive compounds are also explained.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Food and Beverage Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hashem Andishmand
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Barzegar
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade De Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College Of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Physicochemical and Antioxidant Properties of Nanoliposomes Loaded with Rosemary Oleoresin and Their Oxidative Stability Application in Dried Oysters. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120818. [PMID: 36551024 PMCID: PMC9774588 DOI: 10.3390/bioengineering9120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lipid and protein oxidation is a main problem related to the preservation of dried aquatic products. Rosemary oleoresin is widely used as an antioxidant, but its application is limited due to its instability and easy degradation. Nanoliposome encapsulation is a promising and rapidly emerging technology in which antioxidants are incorporated into the liposomes to provide the food high quality, safety and long shelf life. The objectives of this study were to prepare nanoliposome coatings of rosemary oleoresin to enhance the antioxidant stability, and to evaluate their potential application in inhibiting protein and lipid oxidation in dried oysters during storage. The nanoliposomes encapsulating rosemary oleoresin were applied with a thin-film evaporation method, and the optimal amount of encapsulated rosemary oleoresin was chosen based on changes in the dynamic light scattering, Zeta potential, and encapsulation efficiency of the nanoliposomes. The Fourier transform-infrared spectroscopy of rosemary oleoresin nanoliposomes showed no new characteristic peaks formed after rosemary oleoresin encapsulation, and the particle size of rosemary oleoresin nanoliposomes was 100-200 nm in transmission electron microscopy. The differential scanning calorimetry indicated that the nanoliposomes coated with rosemary oleoresin had better thermal stability. Rosemary oleoresin nanoliposomes presented good antioxidant stability, and still maintained 48% DPPH radical-scavenging activity and 45% ABTS radical-scavenging activity after 28 d of storage, which was 3.7 times and 2.8 times higher than that of empty nanoliposomes, respectively. Compared with the control, the dried oysters coated with rosemary oleoresin nanoliposomes showed significantly lower values of carbonyl, sulfhydryl content, thiobarbituric acid reactive substances, Peroxide value, and 4-Hydroxynonenal contents during 28 d of storage. The results provide a theoretical basis for developing an efficient and long-term antioxidant approach.
Collapse
|
5
|
Huang L, Teng W, Cao J, Wang J. Liposomes as Delivery System for Applications in Meat Products. Foods 2022; 11:foods11193017. [PMID: 36230093 PMCID: PMC9564315 DOI: 10.3390/foods11193017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
In the meat industry, microbial contamination, and lipid and protein oxidation are important factors for quality deterioration. Although natural preservatives have been widely used in various meat products, their biological activities are often reduced due to their volatility, instability, and easy degradation. Liposomes as an amphiphilic delivery system can be used to encapsulate food active compounds, which can improve their stability, promote antibacterial and antioxidant effects and further extend the shelf life of meat products. In this review, we mainly introduce liposomes and methods of their preparation including conventional and advanced techniques. Meanwhile, the main current applications of liposomes and biopolymer-liposome hybrid systems in meat preservation are presented.
Collapse
Affiliation(s)
- Li Huang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: (J.C.); (J.W.)
| | - Jinpeng Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (J.C.); (J.W.)
| |
Collapse
|
6
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Abstract
Plants when exposed to toxic levels of metals can suffer morphological or physiological damage because toxic metals can interact with several vital molecules in the plant. One possibility to remove these contaminants from the environment is through the phytoremediation technique, since secondary metabolites produced by plants can reverse these damages. To evaluate the cytoprotective activity, the dry mass and possible damage to the membranes of Lactuca sativa (lettuce) seedlings subjected to different concentrations of mercury chloride in association with catechin and quercetin in suballelopathic concentration were determined. The coordination of mercury chloride with substances was also evaluated using vibrational spectroscopy (Raman and FTIR). The interaction of the mentioned flavonoids with mercury chloride was evidenced through vibrational spectroscopy. When the metal was associated with catechin and quercetin, there was an increase in dry mass of almost 3 times when compared with the HgCl2 alone, demonstrating that these flavonoids act as cytoprotective agents. However, in the presence of catechin and quercetin, membrane damage caused by mercury chloride has a level similar to that observed in control plants, demonstrating none statistical difference. Comparing the highest concentration with the lowest concentration of the metal associated with quercetin, it can be seen that the intensity of the peaks in this region decreases when the concentration of the metal increases, indicating an interaction between the metallic compound and the flavonoid. In this context, the use of secondary metabolites can be an alternative in the process of remediation of areas contaminated by mercury chloride, as they mitigate the effects of mercury chloride on lettuce seedlings.
Collapse
|
8
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
9
|
Wu Z, Li C, Chen Y, Liu Q, Li N, He X, Li W, Shen R, Li L, Wei C, Shao S, Fu F, Ding J, Sun X, Wang D, Yuan G, Su Y, Zhao J, Xu J, Xu R, Xu X, Xu F. Chrysin Protects Against Titanium Particle-Induced Osteolysis by Attenuating Osteoclast Formation and Function by Inhibiting NF-κB and MAPK Signaling. Front Pharmacol 2022; 13:793087. [PMID: 35401243 PMCID: PMC8985127 DOI: 10.3389/fphar.2022.793087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Bone homeostasis only exists when the physical function of osteoblast and osteoclast stays in the balance between bone formation and resorption. Bone resorption occurs when the two processes are uncoupled, shifting the balance in favour of bone resorption. Excessive activation of osteoclasts leads to a range of osteolytic bone diseases including osteoporosis, aseptic prosthesis loosening, rheumatoid arthritis, and osteoarthritis. Receptor activator of nuclear factor kappa-B ligand (RANKL) and its downstream signaling pathways are recognized as key mediators that drive the formation and activation of osteoclastic function. Hence, osteoclast formation and/or its function remain as dominant targets for research and development of agents reaching the treatment towards osteolytic diseases. Chrysin (CHR) is a flavonoid with a wide range of anti-inflammatory and anti-tumor effects. However, its effect on osteoclasts remains unknown. In this study, we found the effects of CHR on inhibiting osteoclast differentiation which were assessed in terms of the number and size of TRAcP positive multinucleated osteoclasts (OCs). Further, the inhibitory effects of CHR on bone resorption and osteoclast fusion of pre-OC were assessed by hydroxyapatite resorption pit assay and F-actin belts staining; respectively. Western blotting analysis of RANKL-induced signaling pathways and immunofluorescence analysis for p65 nuclear translocation in response to RANKL-induced osteoclasts were used to analyze the mechanism of action of CHR affecting osteoclasts. Lastly, the murine calvarial osteolysis model revealed that CHR could protect against particle-induced bone destruction in vivo. Collectively, our data strongly suggested that CHR with its promising anti-tumor effects would also be a potential therapeutic agent for osteolytic diseases.
Collapse
Affiliation(s)
- Zuoxing Wu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei He
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Weibin Li
- Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Shen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Li Li
- Pharmaceutic College, Guangxi Medical University, Nanning, China
| | - Chenming Wei
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Siyuan Shao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Fangsheng Fu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiaxin Ding
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Xiaochen Sun
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Dairong Wang
- Department of Orthopedics, Guilin People’s Hospital, Guilin, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yiji Su
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ren Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Orthopedic Surgery, The First Afiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Ren Xu, ; Xin Xu, ; Feng Xu,
| | - Xin Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Ren Xu, ; Xin Xu, ; Feng Xu,
| | - Feng Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Department of Subject Planning, Ninth Peoples Hospital Shanghai, Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Ren Xu, ; Xin Xu, ; Feng Xu,
| |
Collapse
|
10
|
Zhou P, Tang D, Zou J, Wang X. An alternative strategy for enhancing stability and antimicrobial activity of catechins by natural deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
de Figueiredo MJ, Grisi CVB, Santiago ÂM, Vieira EDA, Cordeiro AMTDM, Vilela AF, Viana AD, de Sousa S, Conrado LDS. Characterization and application of Croton blanchetianus Baill extract for lamb ribs preservation. Food Chem 2021; 373:131404. [PMID: 34715632 DOI: 10.1016/j.foodchem.2021.131404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
This research evaluated the antioxidant, antimicrobial and toxicity potential of the leaf extract of Croton blanchetianus Baill (ExCb) and its effect on the conservation of lamb ribs. The ExCb (control treatment) revealed higher concentration of 2,5-dihydroxybenzoic acid (190.10 mg/g), catechin (84.10 mg/g), rosmarinic acid (56.01 mg/g), 4-hydroxybenzoic acid (52.05 mg/g) and myricetin (40.00 mg/g). And it showed high phenolic content (204.05 mg GAE/g), antioxidant potential (11.78 µg/mL by DPPH and 140.40 mmol Sulf Fer/g by FRAP) and antimicrobial activity with inhibition for Staphylococcus aureus, Listeria innocua, Salmonella enterica, Escherichia coli and Aspergillus flavus. However, it showed toxicity against brine shrimp (Artemia Salina) (LD50 of 66.26 μg/mL). The 2,5-dihydroxybenzoic acid was indicated as the main compound responsible for the toxicity of ExCb. After treatment in an oven at 110 °C for 15 min, the toxicity of ExCb was reduced by over 7 times, the compound 2,5-dihydroxybenzoic acid was not identified, and still maintained the phenolic compounds content of 94.35% and antioxidant activity compared to the control (without thermal treatment). The application of absorbent containing 50 mg/mL of ExCb added to the packaging maintained the quality and prevented the lipid oxidation of lamb ribs during 10 days of refrigerated storage.
Collapse
Affiliation(s)
- Maria José de Figueiredo
- Departamento de Gestão e Tecnologia Agroindustrial, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil.
| | - Cristiani Viegas Brandão Grisi
- Programa de Pós-Graduação em Tecnologia Agroalimentar, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil
| | - Ângela Maria Santiago
- Departamento de Química, Universidade Estadual da Paraiba, Campina Grande, Paraiba 58101000, Brazil
| | - Erica de Andrade Vieira
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Centro de Tecnologia, Universidade Federal da Paraíba, 58051900 João Pessoa, Paraiba, Brazil
| | - Angela Maria Tribuzy de Magalhães Cordeiro
- Programa de Pós-Graduação em Tecnologia Agroalimentar, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil; Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Centro de Tecnologia, Universidade Federal da Paraíba, 58051900 João Pessoa, Paraiba, Brazil
| | - Anderson Ferreira Vilela
- Departamento de Gestão e Tecnologia Agroindustrial, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil
| | - Arianne Dantas Viana
- Departamento de Gestão e Tecnologia Agroindustrial, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil
| | - Solange de Sousa
- Departamento de Gestão e Tecnologia Agroindustrial, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil; Programa de Pós-Graduação em Tecnologia Agroalimentar, Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, 58220000 - Bananeiras, Paraiba, Brazil
| | - Líbia de Sousa Conrado
- Unidade Acadêmica de Engenharia Química, Universidade Federal de Campina Grande, Campina Grande, Paraiba 58429900, Brazil
| |
Collapse
|
12
|
Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari MR, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces 2021; 204:111781. [PMID: 33930733 DOI: 10.1016/j.colsurfb.2021.111781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Catechins are polyphenolic compounds which abundantly occur in the plants, especially tea leaves. They are widely used in nutraceutical and pharmaceutical formulations due to their capability of lowering the risk of developing various diseases. Nevertheless, low stability, loss of antioxidant and antimicrobial activities hinder the direct application of catechins in food formulations. To surmount this pervasive challenge, bioactive ingredients should be entrapped in a biopolymeric matrix. Thus, nanoencapsulation technology would be an appropriate strategy to improve the stability of these bioactive compounds and to protect them against degradation. Among different types of nanocarriers, biopolymer-based nanovehicles has captured a lot of attention in both industry and academia due to their safety and biocompatibility. This revision enlarges upon the various types of biopolymeric nanostructures used for accommodation of catechins, namely nanogels, nanotubes, nanofibers, nanoemulsions and nanoparticles. Last but not least, the applications of the entrapped catechins in the food industry are highlighted.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zahra Hoseyni
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Sedighe Tavasoli
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia
| | - Iman Katouzian
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
13
|
Wang S, Guan R, Huang H, Yang K, Cai M, Chen D. Effects of Different Smoking Materials and Methods on the Quality of Chinese Traditional Bacon (Larou). J Food Prot 2021; 84:359-367. [PMID: 33038238 DOI: 10.4315/jfp-20-223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
ABSTRACT Larou is a traditional smoked meat product in China. In this experiment, larou was processed with different smoking materials and methods to determine whether differences in processing methods would affect the quality of the larou and the concentrations of carcinogens. Pork bellies were marinated, dried, and divided into four groups and then directly smoked with four different smoking materials for 40 min. The smoking material for larou that was most effective was then used with an indirect smoking device with an nano-activated carbon fiber filter and evaluated as a single-factor variable. The surface area of the nano-activated carbon filter was 978.00 m2/g, and this filter effectively adsorbed the ash particles from the smoke. For the group smoked with pomelo skins (PS), the highest concentrations and number of phenols were 4.48% and 11, respectively, which increased the smoke flavor significantly. The moisture was 32.64%, and the Staphylococcus, lactic acid bacteria, and yeast and mold levels were 0.98, 1.10, and 0.59 log CFU/g, indicating inhibition of harmful bacteria and a beneficial microbial environment for larou fermentation. The benzo[a]pyrene (B[a]P) concentration in PS smoke determined with the indirect smoking device was 1.82 μg/kg, whereas that determined with the direct smoking device was 36.1 μg/kg, a significant difference (P < 0.01). These findings suggested that indirect smoking with PS could effectively maintain microbial quality and reduce the B[a]P[mc] concentrations in larou. This processing method can be used for the production of this meat product. HIGHLIGHTS
Collapse
Affiliation(s)
- Sijia Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China.,College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-2717-0996 [R.G.])
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dandan Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
14
|
Guizellini GM, Torres EAFDS, Freitas RAMS, Saldanha T, Sawaya ACHF, Gamallo OD, Soares MJ, de Oliveira VS, Sampaio GR. The anticholesterol oxidation effects of garlic (Allium sativum L.) and leek (Allium ampeloprasum L.) in frozen fish burgers submitted to grilling. J Food Sci 2020; 85:2416-2426. [PMID: 32681539 DOI: 10.1111/1750-3841.15344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
This study determined the total phenolic content and antioxidant capacity of garlic (Allium sativum L.) and leek (Allium ampeloprasum L.), as well as evaluated their anticholesterol oxidation potential in fish burgers. The total phenolic contents were 1.1 ± 0.1 mg GAE/g FW to garlic and 1.3 ± 0.4 mg GAE/g FW for leek. Leek extract showed antioxidant activity index (1.3 ± 0.01) in DPPH and β-carotene/linoleic acid assay (66.5 ± 1.6%); however, in ORAC assay, no statistic differences were observed (P > 0.05). Besides that, bioactive compounds of garlic and leek extracts were identified by ultra-high performance liquid chromatography-electrospray by ionization-mass spectrometry (UHPLC-ESI-MS). Fish burgers were prepared using different concentrations of leek and garlic and stored at -18 °C for 90 days. Thus, at days 0, 30, 60, and 90, the samples were grilled and analyzed as to their cholesterol and cholesterol oxidation products contents. Storage and grilling led to an increase in cholesterol oxidation products; however, addition of garlic and leek minimized cholesterol oxidation products formation. After 90 days, samples containing 3% leek + 0.5% garlic ware the most effective in inhibiting the cholesterol oxides formation during storage and showed the lowest increase in cholesterol oxidation products content (21.16%). Thus, the findings of this research indicate the potential application of garlic and leek as natural inhibitors of cholesterol oxidation in food. PRACTICAL APPLICATION: Garlic and leek have a set of bioactive compounds with a wide antioxidant capacity when used in meat foods such as fish burgers. Garlic and leek used as natural antioxidants perform well in the shelf life of fish burgers and can be substitutes for synthetic antioxidants in this type of product. The presence of both vegetables reduced the formation of prejudicial products to human health generated during the shelf life of the food.
Collapse
Affiliation(s)
- Glória Maria Guizellini
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Maiara Jurema Soares
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
15
|
Wu J, Guan R, Huang H, Liu Z, Shen H, Xia Q. Effect of catechin liposomes on the nitrosamines and quality of traditional Chinese bacon. Food Funct 2019; 10:625-634. [DOI: 10.1039/c8fo01677a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposomes are capable of increasing the nitrosamine inhibition of catechins in traditional Chinese bacon after long-term storage.
Collapse
Affiliation(s)
- Jieyu Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine
- China Jiliang University
- Hangzhou 310018
- China
| | - Zhenfeng Liu
- Chiatai Qingchunbao Pharmaceutical Co
- LTD
- Hangzhou 310023
- China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention
- Hangzhou 310051
- China
| | - Qile Xia
- Food Science Institute
- Zhejiang Academy of Agricultural Sciences
- Hangzhou 310021
- China
| |
Collapse
|