1
|
Cozzolino D, Chapman J. Advances, limitations, and considerations on the use of vibrational spectroscopy towards the development of management decision tools in food safety. Anal Bioanal Chem 2024; 416:611-620. [PMID: 37542534 DOI: 10.1007/s00216-023-04849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Food safety and food security are two of the main concerns for the modern food manufacturing industry. Disruptions in the food supply and value chains have created the need to develop agile screening tools that will allow the detection of food pathogens, spoilage microorganisms, microbial contaminants, toxins, herbicides, and pesticides in agricultural commodities, natural products, and food ingredients. Most of the current routine analytical methods used to detect and identify microorganisms, herbicides, and pesticides in food ingredients and products are based on the use of reliable and robust immunological, microbiological, and biochemical techniques (e.g. antigen-antibody interactions, extraction and analysis of DNA) and chemical methods (e.g. chromatography). However, the food manufacturing industries are demanding agile and affordable analytical methods. The objective of this review is to highlight the advantages and limitations of the use of vibrational spectroscopy combined with chemometrics as proxy to evaluate and quantify herbicides, pesticides, and toxins in foods.
Collapse
Affiliation(s)
- Daniel Cozzolino
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - James Chapman
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
2
|
Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration. Microorganisms 2022; 10:microorganisms10122444. [PMID: 36557696 PMCID: PMC9782989 DOI: 10.3390/microorganisms10122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) is an accurate, fast and safe technique whose full potential remains to be exploited. Lichens are a paradigm of symbiotic association, with extraordinary properties, such as abiotic stress tolerance and adaptation to anhydrobiosis, but subjacent mechanisms await elucidation. Our aim is characterizing the metabolomic NIRS fingerprints of Ramalina farinacea and Lobarina scrobiculata thalli, and of the cultured phycobionts Trebouxia lynnae and Trebouxia jamesii. Thalli collected in an air-dry state and fresh cultivated phycobionts were directly used for spectra acquisition in reflectance mode. Thalli water peaks were associated to the solvation shell (1354 nm) and sugar-water interactions (1438 nm). While northern-southern orientation related with two hydrogen bonded (S2) water, the site was related to one hydrogen bonded (S1). Water, lipids (saturated and unsaturated), and polyols/glucides contributed to the profiles of lichen thalli and microalgae. R. farinacea, with higher desiccation tolerance, shows higher S2 water than L. scrobiculata. In contrast, fresh phycobionts are dominated by free water. Whereas T. jamesii shows higher solvation water content, T. lynnae possesses more unsaturated lipids. Aquaphotomics demonstrates the involvement of strongly hydrogen bonded water conformations, polyols/glucides, and unsaturated/saturated fatty acids in the dehydration process, and supports a "rubbery" state allowing enzymatic activity during anhydrobiosis.
Collapse
|
3
|
Pandiselvam R, Prithviraj V, Manikantan MR, Kothakota A, Rusu AV, Trif M, Mousavi Khaneghah A. Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review. Front Nutr 2022; 9:973457. [PMID: 36313102 PMCID: PMC9597448 DOI: 10.3389/fnut.2022.973457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
The qualitative and quantitative evaluation of agricultural products has often been carried out using traditional, i.e., destructive, techniques. Due to their inherent disadvantages, non-destructive methods that use near-infrared spectroscopy (NIRS) coupled with chemometrics could be useful for evaluating various agricultural products. Advancements in computational power, machine learning, regression models, artificial neural networks (ANN), and other predictive tools have made their way into NIRS, improving its potential to be a feasible alternative to destructive measurements. Moreover, the incorporation of suitable preprocessing techniques and wavelength selection methods has arguably proven its practical feasibility. This review focuses on the various computation methods used for processing the spectral data collected and discusses the potential applications of NIRS for evaluating the quality and safety of agricultural products. The challenges associated with this technology are also discussed, as well as potential future perspectives. We conclude that NIRS is a potentially useful tool for the rapid assessment of the quality and safety of agricultural products.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR –Central Plantation Crops Research Institute, Kasaragod, Kerala, India,*Correspondence: R. Pandiselvam
| | - V. Prithviraj
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - M. R. Manikantan
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR –Central Plantation Crops Research Institute, Kasaragod, Kerala, India,M. R. Manikantan
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany,Monica Trif
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Wang H, Wang C, Peng Z, Sun H. Feasibility study on early identification of freshness decay of fresh-cut kiwifruit during cold chain storage by Fourier transform-near infrared spectroscopy combined with chemometrics. J Food Sci 2022; 87:3138-3150. [PMID: 35638336 DOI: 10.1111/1750-3841.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
This work mainly aimed to evaluate the feasibility of Fourier transform-near infrared spectroscopy (FT-NIRS) combined with chemometrics in early identification of freshness decay of fresh-cut kiwifruit during simulated cold chain storage, with organoleptic evaluation as a reference. By linear discriminant analysis, the freshness decay could be identified after only 2 days of cold storage, corresponding to freshness level of 3.41 ± 0.27 N (hardness), 0.70 ± 0.05 g/kg (total acid), 8.62 ± 0.06 g/100 g (reducing sugars), 62.04 ± 1.03 mg/100 g (vitamin C) and 2.05 ± 0.11 log10 CFU/g (total plate count). Organoleptic evaluators could not perceive the freshness decay that occurred after 2 days of cold storage. Moreover, the freshness decay could be well quantitatively predicted by partial least squares regression, with low RMSEp (0.18-05.42) and high R2 (0.90-0.96). FT-NIRS appears to be a promising option for early warning of the freshness decay of fresh-cut kiwifruit during cold chain storage, thereby preventing serious spoilage and ensuring fresh fruits for consumers. PRACTICAL APPLICATION: This work is based on the fact that fresh-cut kiwifruit is prone to freshness decay under unstable cold chain conditions, using FT-NIRS combined with chemometrics to identify the freshness decay early and rapidly, to a certain extent, early warn freshness decay and effectively prevent serious spoilage. The technology can be used for food regulatory agencies to monitor the freshness of fresh-cut kiwifruit, and can also be applied for fruit processing enterprises and dealers to ensure the freshness and high quality of fresh-cut kiwifruit.
Collapse
Affiliation(s)
- Huxuan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Cong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Zhonghua Peng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Hongmin Sun
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Assessment of different antimicrobials to inhibit the growth of Zygosaccharomyces rouxii cocktail in concentrated apple juice. Food Microbiol 2020; 91:103549. [PMID: 32539955 DOI: 10.1016/j.fm.2020.103549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/24/2022]
Abstract
Zygosaccharomyces rouxii represents the main spoilage cause of concentrated apple juice, leading to waste of products or recalls. Essential oils components derived from plants have been found to present antimicrobial activities against various microbes. However, few work has been reported about their antimicrobial activities against Z. rouxii in concentrated apple juice. In this work, reparameterized Gompertz equation was used to evaluate the antimicrobial activities of different antimicrobials to inhibit the growth of a Z. rouxii cocktail (6.3 lg colony forming units/mL) composed of six strains isolated from concentrated apple juice and two strains from honey and grape must. The obtained mathematical models presented that thymol, carvacrol and trans-cinnamaldehyde were the promising options to inhibit Z. rouxii in 30 oBrix apple juice, reaching a maximal decrease on yeast growth of around 99.65 ± 0.61%. Whereas other antimicrobials showed lower antimicrobial activities with a maximal growth decrease of ranging from 67.13 ± 3.62% to 13.38 ± 1.16%. Additionally, the sensorial characteristics were not affected when the antimicrobials assayed were applied at the effective concentrations in commercial apple juice product. This work provided a theoretical feasibility that thymol, carvacrol and trans-cinnamaldehyde could be applied as natural preservatives for the control of Z. rouxii-related spoilage in fruit juice industry.
Collapse
|
6
|
Coic L, Sacré PY, Dispas A, Dumont E, Horne J, De Bleye C, Fillet M, Hubert P, Ziemons E. Evaluation of the analytical performances of two Raman handheld spectrophotometers for pharmaceutical solid dosage form quantitation. Talanta 2020; 214:120888. [PMID: 32278435 DOI: 10.1016/j.talanta.2020.120888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
This paper addresses the issue of pharmaceutical solid dosage form quantitation using handheld Raman spectrophotometers. The two spectrophotometers used are designed with different technologies: one allows getting a more representative sampling with the Orbital Raster Scanning technology and the other one allows setting acquisition parameters. The goal was to evaluate which technology could provide the best analytical results. Several parameters were optimized to get the lowest prediction error in the end. The main objective of this study was to evaluate if this kind of instrument would be able to identify substandard medicines. For that purpose, two case-study were explored. At first, a full ICH Q2 (R1) compliant validation was performed for moderate Raman scatterer active pharmaceutical ingredient (API) in a specific formulation. It was successfully validated in the ±15% relative total error acceptance limits, with a RMSEP of 0.85% (w/w). Subsequently, it was interesting to evaluate the influence of excipients when the API is a high Raman scatterer. For that purpose, a multi-formulation model was developed and successfully validated with a RMSEP of 2.98% (w/w) in the best case. These two studies showed that thanks to the optimization of acquisition parameters, Raman handheld spectrophotometers methods were validated for two different case-study and could be applied to identify substandard medicines.
Collapse
Affiliation(s)
- Laureen Coic
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium.
| | - Pierre-Yves Sacré
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Amandine Dispas
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium; University of Liege (ULiege), CIRM, MaS-Santé Hub, Laboratory for the Analysis of Medicines, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Elodie Dumont
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Julie Horne
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Charlotte De Bleye
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Marianne Fillet
- University of Liege (ULiege), CIRM, MaS-Santé Hub, Laboratory for the Analysis of Medicines, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, Vibra-Santé Hub, Laboratory of Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000, Liege, Belgium
| |
Collapse
|