1
|
Li Y, Fu S, Klein MS, Wang H. High Prevalence of Antibiotic Resistance in Traditionally Fermented Foods as a Critical Risk Factor for Host Gut Antibiotic Resistome. Microorganisms 2024; 12:1433. [PMID: 39065201 PMCID: PMC11279133 DOI: 10.3390/microorganisms12071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the suitability of fermented food interventions to replenish damaged gut microbiota. Metagenomic assessment of published sequencing data found that fermented food interventions led to a significant increase in the gut antibiotic resistome in healthy human subjects. Antibiotic resistome and viable antibiotic-resistant (AR) bacteria were further highly prevalent in retail kimchi and artisan cheeses by metagenomic and culture analyses. Representative AR pathogens of importance in nosocomial infections, such as Klebsiella pneumoniae, Serratia marcescens, and vancomycin-resistant Enterococcus (VRE), as well as commensals and lactic acid bacteria, were characterized; some exhibited an extremely high minimum inhibitory concentration (MIC) against antibiotics of clinical significance. Exposing fermented food microbiota to representative antibiotics further led to a boost of the corresponding antibiotic and multidrug-resistance gene pools, as well as disturbed microbiota, including the rise of previously undetectable pathogens. These results revealed an underestimated public health risk associated with fermented food intervention at the current stage, particularly for susceptible populations with compromised gut integrity and immune functions seeking gut microbiota rescue. The findings call for productive intervention of foodborne AR via technology innovation and strategic movements to mitigate unnecessary, massive damages to the host gut microbiota due to orally administered or biliary excreted antibiotics.
Collapse
Affiliation(s)
| | | | | | - Hua Wang
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA (M.S.K.)
| |
Collapse
|
2
|
Santamarina-García G, Amores G, Llamazares D, Hernández I, Javier R Barron L, Virto M. Phenotypic and genotypic characterization of antimicrobial resistances reveals the effect of the production chain in reducing resistant lactic acid bacteria in an artisanal raw ewe milk PDO cheese. Food Res Int 2024; 187:114308. [PMID: 38763625 DOI: 10.1016/j.foodres.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Diego Llamazares
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Zinno P, Perozzi G, Devirgiliis C. Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Microorganisms 2023; 11:1696. [PMID: 37512869 PMCID: PMC10383130 DOI: 10.3390/microorganisms11071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global and increasing threat to human health. Several genetic determinants of AMR are found in environmental reservoirs, including bacteria naturally associated with widely consumed fermented foods. Through the food chain, these bacteria can reach the gut, where horizontal gene transfer (HGT) can occur within the complex and populated microbial environment. Numerous studies on this topic have been published over the past decades, but a conclusive picture of the potential impact of the non-pathogenic foodborne microbial reservoir on the spread of AMR to human pathogens has not yet emerged. This review critically evaluates a comprehensive list of recent experimental studies reporting the isolation of AMR bacteria associated with fermented foods, focusing on those reporting HGT events, which represent the main driver of AMR spread within and between different bacterial communities. Overall, our analysis points to the methodological heterogeneity as a major weakness impairing determination or a causal relation between the presence of AMR determinants within the foodborne microbial reservoir and their transmission to human pathogens. The aim is therefore to highlight the main gaps and needs to better standardize future studies addressing the potential role of non-pathogenic bacteria in the spread of AMR.
Collapse
Affiliation(s)
- Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
4
|
Wang C, Liu H, He L, Li C. Determination of bacterial community and its correlation to volatile compounds in Guizhou Niuganba, a traditional Chinese fermented dry-cured beef. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
França A, Gaio V, Lopes N, Melo LDR. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021; 10:170. [PMID: 33557202 PMCID: PMC7913919 DOI: 10.3390/pathogens10020170] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.
Collapse
Affiliation(s)
- Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| | | | | | - Luís D. R. Melo
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| |
Collapse
|
6
|
Liu Y, Zheng X, Xu L, Tong P, Zhu M, Peng B, Yao G. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Staphylococcus aureus Isolated from Animals, Meats, and Market Environments in Xinjiang, China. Foodborne Pathog Dis 2021; 18:718-726. [PMID: 33534639 DOI: 10.1089/fpd.2020.2863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus has been recognized as an important foodborne pathogen. However, knowledge about the epidemiology and genetic characteristics of S. aureus in the meat production chain from farm to market is limited. The aim of this study was to investigate the genetic characteristics of S. aureus in animal samples isolated from Xinjiang province farms and farmer' markets, by determining staphylococcal protein A (spa) repeat region and virulence factor typing, and by assessment of antimicrobial resistance. Out of 1324 samples, 128 (9.7%) were positive for S. aureus, 26 (2.0%) of them were identified as methicillin-resistant S. aureus (MRSA) and 88 (6.6%) of them were identified as vancomycin-resistant S. aureus (VRSA). Antimicrobial resistance was determined using the disk diffusion method. S. aureus isolates showed resistance to penicillin G (98.4%), clarithromycin (69.5%), erythromycin (69.5%), vancomycin (68.8%), and tetracycline (67.2%). A total of 80.4% of isolates showed resistance to three or more antimicrobial classes. PCR was used to detect ten virulence genes such as the enterotoxin (sea, seb, and sec), hemolysin (hla and hlb), clumping factor (clfA), and fibronectin-binding proteins A and B (fnbA and fnbB). Our study showed that isolates harbored two or seven virulence genes. All strains encode hla and clfA, and half of them encode hlb and enterotoxin genes. The spa typing results showed that the 128 isolates were grouped into 32 spa types. The main spa types were t127 (22.7%), t2592 (12.5%), t437 (10.9%), and t2616 (10.9%). Notably, isolates of t437 type accounted for 46.2% of the MRSA. Our data indicate that meats in the slaughterhouse and farmers' markets were contaminated with S. aureus. S. aureus virulence genes and spa types were diverse, and its antibiotic resistance was serious. The presence of MRSA and VRSA represents potential public health risks and warrants further investigation regarding the driving factors of such resistance and their transmission to humans.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Lan Xu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mingyue Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Bin Peng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Arch Microbiol 2020; 203:597-607. [PMID: 32995979 DOI: 10.1007/s00203-020-02053-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 01/18/2023]
Abstract
In the present study, lactic acid bacteria were isolated from table olive in Morocco. Random Amplified Polymorphic DNA fingerprinting with (GTG)'(5) primer revealed a remarquable variability within isolates. According to the molecular identification, Enterococcus faecium was the most dominant species isolated with 32 strains (84.21%), followed by 4 strains of Weissella paramesenteroides (10.52%), 1 strain of Leuconostoc mesenteroides (2.63%) and Lactobacillus plantarum (2.63%). All of the strains that were identified showed occurrence of more than one bacteriocin-encoding gene. Based on the results obtained, L. plantarum 11 showed a mosaic of loci coding for nine bacteriocins (pln A, pln D, pln K, pln G, pln B, pln C, pln N, pln J, ent P). A phenotypic and genotypic antibiotic resistance was also examined. L. plantarum 11, L. mesenteroides 62, W. paramesenteroides 9 and W. paramesenteroides 36 as well as all the strains of E. faecium were susceptible to ampicillin, clindamycin and teicoplanin; however, isolates showed a resistance profile against tetracycline and erythromycin. Except E. faecium 114, E. faecium 130 and L. plantarum 11, no antibiotic resistance genes were detected in all of the strains, which might be due to resistances resulting from non-transferable or non-acquired resistance determinants (intrinsic mechanism).
Collapse
|
8
|
Screening of bacteriocin-producing lactic acid bacteria in Chinese homemade pickle and dry-cured meat, and bacteriocin identification by genome sequencing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Isolation and Antibiotic Resistant Research of Tetragenococcus halophilus from Xuanwei Ham, A China High-Salt-Fermented Meat Products. Antibiotics (Basel) 2019; 8:antibiotics8030151. [PMID: 31527478 PMCID: PMC6783965 DOI: 10.3390/antibiotics8030151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
We assessed the prevalence of antibiotic resistant and antibiotic resistance genes for 49 Tetragenococcus halophilus (T. halophilus) strains isolated from Xuawei ham in China. The antibiotic resistance phenotype was detected by the Bauer–Kirby (K–B) method and the results showed that 49 isolates can be considered completely susceptible to penicillin, ampicillin, amoxicillin, cefradine, cefotaxime, tetracyclines, minocycline, doxycycline, and vancomycin, but resistant to gentamicin, streptomycin, neomycin, polymyxinB, cotrimoxazole. This resistance was sufficiently high to consider the potential for acquisition of transmissible determinants. A total of 32 isolates were resistant to ofloxacin, 4 isolates were resistant to ciprofloxacin and chloramphenicol, and 2 isolates were resistant to ceftazidime and ticarcillin. The antibiotic resistance genes were detected by routine polymerase chain reaction (PCR). Among the 26 antibiotic resistance genes, 5 varieties of antibiotic resistance genes, including acrB, blaTEM, AAda1, SulII, and GyrB were detected and the detection rates were 89.79%, 47.7%, 16.33%, 77.55%, and 75.51%, respectively. The potential acquisition of transmissible determinants for antibiotic resistance and antibiotic resistance genes identified in this study necessitate the need for a thorough antibiotic resistance safety assessment of T. halophilus before it can be considered for use in food fermentation processes.
Collapse
|