1
|
Yao L, Cooper AL, Gill A, Koziol A, Wong A, Blais BW, Carrillo CD. Overcoming Microbial Inhibition of S. Sonnei Through the Exploitation of Genomically Predicted Antibiotic Resistance Profiles for the Development of Food Enrichment Media. J Food Prot 2024; 87:100302. [PMID: 38754553 DOI: 10.1016/j.jfp.2024.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Linking outbreaks of Shigella spp. to specific foods is challenging due to poor selectivity of current enrichment media. We have previously shown that enrichment media, tailored to the genomically-predicted antimicrobial resistance (AMR) of Shiga toxigenic E. coli strains, enhances their isolation from foods. This study investigates the application of this approach for Shigella isolation. The AMR gene profiles of 21,908 published S. sonnei genomes indicated a high prevalence of genes conferring resistance to streptomycin (aadA, aph(3″)-Ib, aph(6)-Id, 92.8%), sulfonamides (sul1, sul2, 74.8%), and/or trimethoprim (dfrA, 96.2%). Genomic analysis and antibiotic susceptibility testing conducted with a panel of 17 outbreak-associated S. sonnei strains confirmed the correlation of AMR gene detection with resistance phenotypes. Supplementation of Shigella Broth (SB) with up to 400 µg/mL of trimethoprim or sulfadiazine did not suppress the growth of sensitive strains, whereas 100 µg/mL of streptomycin increased the selectivity of this broth. All three antibiotics increased the selectivity of modified Tryptone Soya Broth (mTSB). Based on these results, supplemented media formulations were developed and assessed by measuring the relative growth of S. sonnei in cultures coinoculated with a strain of bacteriocin-producing E. coli that is inhibitory to Shigella growth. S. sonnei was not recovered from cocultures grown in SB or mTSB without antibiotics. In contrast, media supplemented with streptomycin at 50 and 100 µg/mL, trimethoprim at 25 and 50 µg/mL, and sulfadiazine at 100 µg/mL increased the relative proportion of S. sonnei in postenrichment cultures. The enhanced recovery of resistant S. sonnei strains achieved in this study indicates that, in cases where genomic data are available for clinical S. sonnei isolates, customization of selective enrichment media based on AMR gene detection could be a valuable tool for supporting the investigation of foodborne shigellosis outbreaks.
Collapse
Affiliation(s)
- Lang Yao
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6; Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | - Ashley L Cooper
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6.
| | - Alex Gill
- Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada.
| | - Adam Koziol
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6.
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | - Burton W Blais
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6.
| | - Catherine D Carrillo
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6.
| |
Collapse
|
2
|
Yao L, Cooper A, Lau CHF, Wong A, Blais BW, Carrillo CD. Strain-specific Recovery of S. sonnei from Artificially Contaminated Baby Carrots: Enhancing Food-safety Investigations with a Customized Shigella Detection Method Based on Genomically predicted Antibiotic Resistance Traits. J Food Prot 2024; 87:100300. [PMID: 38734413 DOI: 10.1016/j.jfp.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Shigella spp. are Gram-negative gastrointestinal bacterial pathogens that cause bacillary dysentery or shigellosis in humans. Isolation of Shigella from outbreak-associated foods is often problematic due to the lack of selectivity of cultural enrichment broths. To facilitate Shigella recovery from foods, we have developed strain-specific enrichment media based on the genomically-predicted antimicrobial resistance (AMR) features of an outbreak-associated Shigella sonnei strain harboring resistance genes for streptomycin (STR) and trimethoprim (TMP). To assess performance of the method, baby carrots were artificially contaminated with the S. sonnei strain at low (2.4 CFU), medium (23.5 CFU), and high levels (235 CFU) along with 10-fold higher levels of a Shigella-inhibiting Escherichia coli strain. The target S. sonnei strain was successfully recovered from artificially-contaminated baby carrots when enriched in modified Tryptone Soya Broth (mTSB) supplemented with TMP, whereas Shigella was not recovered from Shigella broth (SB) or SB supplemented with STR. Quantitative PCR analysis indicated that supplementation of the enrichment broths with TMP or STR increased the relative proportion of S. sonnei in enrichment cultures, except at the lowest inoculation level for STR. Microbiome profiling of the baby carrot enrichment cultures conducted by 16S rRNA gene sequencing indicated that both SB-STR and mTSB-TMP repressed the growth of competing Enterobacteriaceae in the enrichment cultures, relative to SB without supplementation. Overall, improved Shigella recovery was achieved with the addition of the appropriate custom selective agent during cultural enrichments demonstrating that genomically informed custom selective enrichment of Shigella could be a valuable tool for supporting future foodborne shigellosis outbreak investigations.
Collapse
Affiliation(s)
- Lang Yao
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada; Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Ashley Cooper
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada.
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada.
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Burton W Blais
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada; Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Catherine D Carrillo
- Ottawa Laboratory Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada; Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
3
|
Genomically Informed Custom Selective Enrichment of Shiga Toxigenic Escherichia coli (STEC) Outbreak Strains in Foods Using Antibiotics. J Food Prot 2023; 86:100052. [PMID: 36916559 DOI: 10.1016/j.jfp.2023.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Shiga toxigenic Escherichia coli (STEC) have been implicated in major foodborne outbreaks worldwide. The STEC family of pathogens is biochemically diverse, and current microbiological methods for detecting STEC are limited by the lack of a universal selective enrichment approach and prone to interference by high levels of background microbiota associated with certain types of foods. A novel approach has been developed for the recovery of foodborne illness outbreak strains during outbreak investigations based on the analysis of whole genome sequence data of implicated clinical isolates to determine antimicrobial resistance (AMR) genes. The presence of certain AMR genes in STEC has been correlated with the ability to grow in the presence of a specific antibiotic, which can be used to supplement enrichment broths to improve the recovery of a target strain. The enhanced recovery of STEC strains with different AMR profiles from various food types (beef, sprouts, leafy greens, and raw milk cheese) containing high levels of background microbiota was demonstrated using AMR predictions for nine different antibiotics. This genomically informed custom selective enrichment approach increases the availability of analytical options and improves the reliability of food microbiological analyses in confirming food vehicles implicated in outbreak events and defining the scope of product contamination to support risk assessment and risk management actions.
Collapse
|
4
|
McMahon TC, Kingombe CB, Mathews A, Seyer K, Wong A, Blais BW, Carrillo CD. Microbial Antagonism in Food-Enrichment Culture: Inhibition of Shiga Toxin-Producing Escherichia coli and Shigella Species. Front Microbiol 2022; 13:880043. [PMID: 35814680 PMCID: PMC9259949 DOI: 10.3389/fmicb.2022.880043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens, such as Shiga toxin-producing Escherichia coli (STEC) and Shigella spp., are important causes of foodborne illness internationally. Recovery of these organisms from foods is critical for food safety investigations to support attribution of illnesses to specific food commodities; however, isolation of bacterial cultures can be challenging. Methods for the isolation of STEC and Shigella spp. from foods typically require enrichment to amplify target organisms to detectable levels. Yet, during enrichment, target organisms can be outcompeted by other bacteria in food matrices due to faster growth rates, or through production of antimicrobial agents such as bacteriocins or bacteriophages. The purpose of this study was to evaluate the occurrence of Shigella and STEC inhibitors produced by food microbiota. The production of antimicrobial compounds in cell-free extracts from 200 bacterial strains and 332 food-enrichment broths was assessed. Cell-free extracts produced by 23 (11.5%) of the strains tested inhibited growth of at least one of the five Shigella and seven STEC indicator strains used in this study. Of the 332 enrichment broths tested, cell-free extracts from 25 (7.5%) samples inhibited growth of at least one of the indicator strains tested. Inhibition was most commonly associated with E. coli recovered from meat products. Most of the inhibiting compounds were determined to be proteinaceous (34 of the 48 positive samples, 71%; including 17 strains, 17 foods) based on inactivation by proteolytic enzymes, indicating presence of bacteriocins. The cell-free extracts from 13 samples (27%, eight strains, five foods) were determined to contain bacteriophages based on the observation of plaques in diluted extracts and/or resistance to proteolytic enzymes. These results indicate that the production of inhibitors by food microbiota may be an important challenge for the recovery of foodborne pathogens, particularly for Shigella sonnei. The performance of enrichment media for recovery of Shigella and STEC could be improved by mitigating the impact of inhibitors produced by food microbiota during the enrichment process.
Collapse
Affiliation(s)
- Tanis C. McMahon
- Research and Development, Ottawa Laboratory (Carling), Ontario Laboratory Network, Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Amit Mathews
- Microbiology, Greater Toronto Area Laboratory, Ontario Laboratory Network, Canadian Food Inspection Agency, Toronto, ON, Canada
| | - Karine Seyer
- Microbiology (Food), St-Hyacinthe Laboratory, Eastern Laboratories Network, Canadian Food Inspection Agency, St-Hyacinthe, QC, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory (Carling), Ontario Laboratory Network, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory (Carling), Ontario Laboratory Network, Canadian Food Inspection Agency, Ottawa, ON, Canada
- *Correspondence: Catherine D. Carrillo,
| |
Collapse
|
5
|
Anklam E, Bahl MI, Ball R, Beger RD, Cohen J, Fitzpatrick S, Girard P, Halamoda-Kenzaoui B, Hinton D, Hirose A, Hoeveler A, Honma M, Hugas M, Ishida S, Kass GEN, Kojima H, Krefting I, Liachenko S, Liu Y, Masters S, Marx U, McCarthy T, Mercer T, Patri A, Pelaez C, Pirmohamed M, Platz S, Ribeiro AJS, Rodricks JV, Rusyn I, Salek RM, Schoonjans R, Silva P, Svendsen CN, Sumner S, Sung K, Tagle D, Tong L, Tong W, van den Eijnden-van-Raaij J, Vary N, Wang T, Waterton J, Wang M, Wen H, Wishart D, Yuan Y, Slikker Jr. W. Emerging technologies and their impact on regulatory science. Exp Biol Med (Maywood) 2022; 247:1-75. [PMID: 34783606 PMCID: PMC8749227 DOI: 10.1177/15353702211052280] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Reza M Salek
- International Agency for Research on Cancer, France
| | | | | | | | | | | | | | - Li Tong
- Universities of Georgia Tech and Emory, USA
| | | | | | - Neil Vary
- Canadian Food Inspection Agency, Canada
| | - Tao Wang
- National Medical Products Administration, China
| | | | - May Wang
- Universities of Georgia Tech and Emory, USA
| | - Hairuo Wen
- National Institutes for Food and Drug Control, China
| | | | | | | |
Collapse
|
6
|
Carrillo CD, Blais BW. Whole-Genome Sequence Datasets: A Powerful Resource for the Food Microbiology Laboratory Toolbox. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.754988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whole-genome sequencing (WGS) technologies are rapidly being adopted for routine use in food microbiology laboratories worldwide. Examples of how WGS is used to support food safety testing include gene marker discovery (e.g., virulence and anti-microbial resistance gene determination) and high-resolution typing (e.g., cg/wgMLST analysis). This has led to the establishment of large WGS databases representing the genomes of thousands of different types of food pathogenic and commensal bacteria. This information constitutes an invaluable resource that can be leveraged to develop and validate routine test methods used to support regulatory and industry food safety objectives. For example, well-curated raw and assembled genomic datasets of the key food pathogens (Salmonella enterica, Listeria monocytogenes, and Shiga-toxigenic Escherichia coli) have been used in our laboratory in studies to validate bioinformatics pipelines, as well as new molecular methods as a prelude to the laboratory phase of the “wet lab” validation process. The application of genomic information to food microbiology method development will decrease the cost of test development and lead to the generation of more robust methodologies supporting risk assessment and risk management actions.
Collapse
|