1
|
Liu Y, Liu C, Sun L, Li M, Zhu Y, Deng W, Yu J, Zhang W, Song Z. Investigating flavor and quality characteristics in Chinese bacon from different regions using integrated GC-IMS, electronic sensory assessment, and sensory analysis. Meat Sci 2025; 220:109709. [PMID: 39549429 DOI: 10.1016/j.meatsci.2024.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
To investigate the variance in the quality and flavor profiles of bacon from different regions, gas chromatography-ion mobility spectrometry and electronic sensory techniques (including electronic nose and tongue [e-nose and e-tongue, respectively]) were employed for the flavor analysis of the sourced bacon samples. Both the e-nose and e-tongue successfully distinguished the aromas and flavors of different bacon varieties. Additionally, organic sulfides, aromatic benzenes, and short-chain alkanes, were more abundant in different bacon types. Employing GC-IMS technology, identified 52 volatile flavor compounds within diverse bacon samples, culminating in the establishment of a distinct fingerprint for each individual sample. The relative odor activity value identified 1-propene-3-methylthio, 2-heptanone, phenylacetaldehyde, furfuryl methyl sulfide, and 1-octene as the primary contributors to bacon flavor. These flavor substances were the main cause of the differences in bacon flavor in different regions. The interaction of volatile flavor compounds resulted in notable disparities between the odor profiles detected using the e-nose and e-tongue, even among bacon with similar volatile flavor constituents. In addition, the color and texture of the bacon varied significantly. Bacon from HB (Hubei), YN (Yunnan), and CQ (Chongqing) showed darkness in color. Meanwhile, the hardness of bacon from HN (Hunan), HB (Hubei), and SC (Sichuan) was relatively low. These results not only provide theoretical and technical insights for bacon flavor identification and control but also offer a foundation for consumers to make informed choices when purchasing bacon.
Collapse
Affiliation(s)
- Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Chun Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Lingxia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China.
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Wei Deng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Jiahuan Yu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Wentao Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| | - Zhenning Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, Zhengzhou 450002, China
| |
Collapse
|
2
|
Pu D, Cao B, Xu Z, Zhang L, Meng R, Chen J, Sun B, Zhang Y. Decoding of the enhancement of saltiness perception by aroma-active compounds during Hunan Larou (smoke-cured bacon) oral processing. Food Chem 2025; 463:141029. [PMID: 39241428 DOI: 10.1016/j.foodchem.2024.141029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The enhancement of saltiness induced by odrants perceived from the retronasal cavity during Larou oral processing was analyzed. During the oral processing of Xiangtan Larou, the smoky attribute was the dominant when chewing 0-15 times, followed by the savory (15-24 times) and meaty (24-42 times). Partial least squares analysis predicted 33 aroma compounds from the retronasal cavity significantly (p < 0.05) contributing to the aroma perception. A total of 12 aroma compounds with saltiness-enhancement ability were confirmed by odorant-NaCl mixture model experiments. Results revealed that 2-methoxy-4-vinylphenol (1.00-1000.00 μg/L) had the strongest enhancing effect on saltiness at NaCl (2969.85 mg/L), followed by diallyl sulfide (0.156-2.50 μg/L), 2,5-dimethylthiophene (0.156-50.00 μg/L), 2,6-dimethylphenol (1.00-100.00 μg/L), 2,5-dimethylpyrazine (0.391-50.00 μg/L), and 2,3-butanedione (0.50-100.0 μg/L). The sulfur-containing, nitrogen-containing, and phenolic odorants with savory, roasty, sulfide, meaty or smoky, attributes showed the better ability in saltiness enhancement.
Collapse
Affiliation(s)
- Dandan Pu
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Boya Cao
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Zikang Xu
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Lili Zhang
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Ruixing Meng
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Jiahui Chen
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Baoguo Sun
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yuyu Zhang
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
3
|
Zou H, Deng C, Li J, Lou A, Liu Y, Luo J, Shen Q, Quan W. Quantitative Proteomics Reveals the Relationship between Protein Changes and Volatile Flavor Formation in Hunan Bacon during Low-Temperature Smoking. Foods 2024; 13:1360. [PMID: 38731730 PMCID: PMC11083045 DOI: 10.3390/foods13091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate the changes in proteins and volatile flavor compounds that occur in bacon during low-temperature smoking (LTS) and identify potential correlations between these changes. To achieve this, a combination of gas chromatography-mass spectrometry and proteomics was employed. A total of 42 volatile flavor compounds were identified in the bacon samples, and, during LTS, 11 key volatile flavor compounds with variable importance were found at a projection value of >1, including 2',4'-dihydroxyacetophenone, 4-methyl-2H-furan-5-one, Nonanal, etc. In total, 2017 proteins were quantified at different stages of LTS; correlation coefficients and KEGG analyses identified 27 down-regulated flavor-related proteins. Of these, seven were involved in the tricarboxylic acid (TCA) cycle, metabolic pathways, or amino acid metabolism, and they may be associated with the process of flavor formation. Furthermore, correlation coefficient analysis indicated that certain chemical parameters, such as the contents of free amino acids, carbonyl compounds, and TCA cycle components, were closely and positively correlated with the formation of key volatile flavor compounds. Combined with bioinformatic analysis, the results of this study provide insights into the proteins present in bacon at various stages of LTS. This study demonstrates the changes in proteins and the formation of volatile flavor compounds in bacon during LTS, along with their potential correlations, providing a theoretical basis for the development of green processing methods for Hunan bacon.
Collapse
Affiliation(s)
- Huiyu Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Chuangye Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Junnian Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zhao S, Yuan X, Li Z, Zhao Y, Zhou H, Kang Z, Ma H. Inhibitory effects of pepper (
Zanthoxylum bungeanum
Maxim) leaf extract on lipid and protein oxidation during the processing of Chinese traditional dry‐cured meat (larou). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Xiaorui Yuan
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Zhao Li
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Yanyan Zhao
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
| | - Haixu Zhou
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
| | - Zhuangli Kang
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Hanjun Ma
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| |
Collapse
|
5
|
Zhang Y, Yun Z, Zhu M, Liu Z, Huang Y. Oxidation and flavor changes in smoked bacon cured using bamboo extract concentrate combined with bamboo poles during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yunqi Zhang
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Zhoumiao Yun
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Meilin Zhu
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Zhijun Liu
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Yechuan Huang
- College of Biological Engineering Jingchu University of Technology Jingmen PR China
| |
Collapse
|