1
|
Hamilton AN, Gibson KE. Tulane Virus Persistence and Microbial Stability in 3D Food Ink under Various Storage Conditions: A Pre- and Post-Printing Analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:351-362. [PMID: 38709390 PMCID: PMC11422428 DOI: 10.1007/s12560-024-09597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
3D food printers facilitate novel customization of the physicochemical properties of food. This study aimed to investigate the impact of storage conditions on the inactivation of the human norovirus surrogate, Tulane virus (TuV), within 3D printed foods. TuV-inoculated protein cookie food ink (∽ 4 log PFU/g) was distributed into 18 3D food printer capsules (50 g each); half immediately underwent extrusion. Storage of the capsules and printed food products at 20 °C (0, 6, 12, and 24 h), 4 °C (0, 1, 3, and 5d), and - 18 °C (0, 1, 3, and 5d) was completed before analysis for TuV via plaque assays in addition to aerobic plate count, yeast and mold counts, and pH and water activity (aw) measurements. A significant 3-way interaction effect was observed between time, temperature, and storage method (capsule/print) (p = 0.006). Significant findings include: (1) A greater reduction in virions was observed in capsules after 24 h at 20 °C and (2) a substantial reduction in virions at 4 °C from day 0 to day 1 was observed, independent of storage method. Microbial indicators remained steady across temperatures, with storage temperature significantly impacting pH and aw. A significant two-way interaction effect (p = 0.006) was found between microorganism type (yeast/aerobic counts) and temperature. This research seeks to provide insights for the food industry and regulatory bodies in crafting guidelines for the safe storage and handling of 3D printed foods and inks.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Verbrugghe G, Soudan-Foulques C, Fraisse A, Waldman Vigne P, Perelle S, Ndoye FT, Martin-Latil S. A Useful Method to Provide Infectious and Cultivable In Vitro Naked Viral Particles of Hepatitis A Virus. Viruses 2024; 16:1360. [PMID: 39339837 PMCID: PMC11435643 DOI: 10.3390/v16091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis A virus (HAV) is an enteric virus mainly transmitted by the faecal-oral route. Belonging to the Picornaviridae family, HAV was first described as small naked particles, like all viruses of this family. However, for about a decade, it was demonstrated that HAV particles can exist surrounded by a lipid bilayer. This type of particle, called enveloped HAV (eHAV), acquires its lipid bilayer by hijacking a part of cell membranes during the virion egress in the last steps of the viral cycle. In vitro culture systems produce mainly eHAV, and so, to date, most of the studies on HAV have been carried out using this type of viral particle. In this study, a method based on lipid bilayer removal by chemical delipidation is proposed for the production of naked HAV particles. The resulting naked HAV particles conserve their infectivity and are therefore fully cultivable in vitro. By using this method, naked HAV particles can easily be produced in vitro and can be useful to perform further studies such as inactivation processes for the food industry, as HAV is a main concern for food safety.
Collapse
Affiliation(s)
- Gwenaëlle Verbrugghe
- Université Paris-Saclay, INRAE, UR FRISE, 92160 Antony, France;
- ANSES, Laboratory for Food Safety, UVE, 94700 Maisons-Alfort, France; (A.F.); (S.P.)
| | - Chloé Soudan-Foulques
- ANSES, Animal Health Laboratory, UMR1161 Virology, INRAe, Anses, ENVA, 94700 Maisons-Alfort, France;
| | - Audrey Fraisse
- ANSES, Laboratory for Food Safety, UVE, 94700 Maisons-Alfort, France; (A.F.); (S.P.)
| | | | - Sylvie Perelle
- ANSES, Laboratory for Food Safety, UVE, 94700 Maisons-Alfort, France; (A.F.); (S.P.)
| | | | - Sandra Martin-Latil
- ANSES, Laboratory for Food Safety, UVE, 94700 Maisons-Alfort, France; (A.F.); (S.P.)
- ANSES, Animal Health Laboratory, UMR1161 Virology, INRAe, Anses, ENVA, 94700 Maisons-Alfort, France;
| |
Collapse
|
3
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|