1
|
Murphy CM, Friedrich LM, Strawn LK, Danyluk MD. Salmonella and Listeria monocytogenes Survival on Field Packed Cantaloupe Contact Surfaces. J Food Prot 2024; 87:100299. [PMID: 38734412 DOI: 10.1016/j.jfp.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Field-packing of cantaloupes involves numerous food contact surfaces that can contamination melons with foodborne pathogens; the soil on these surfaces increases throughout the harvest day. Data are lacking on the cross-contamination risk from contaminated food contact surfaces under the dry conditions typical of cantaloupe field-packing operations. This study sought to evaluate the survival of Salmonella and Listeria monocytogenes on cantaloupe field-pack food contact surfaces using both a wet and dry inoculum to provide insights into managing foodborne pathogen contamination risks. Five clean or fouled materials (cotton gloves, nitrile gloves, rubber gloves, cotton rags, and stainless steel) were inoculated with a cocktail of either Salmonella or L. monocytogenes. A wet inoculum was spot inoculated (100 µL) onto coupons. A dry inoculum was prepared by mixing wet inoculum with 100 g of sterile sand and shaking the coupons with the inoculated sand for 2 min. Coupons were held at 35°C (35% RH) and enumerated at 0, 2, 4, 6, and 8 h. Significant differences in pathogen concentrations over time were calculated, and the GInaFiT add-in tool for Excel was used to build Log-linear, Weibull, and Biphasic die-off models. Depending on the material type, coupon condition, and inoculum type, Salmonella and L. monocytogenes reductions over 8 h ranged from 0.3 to 3.3 and -0.4 to 4.2 log10 CFU/coupon, respectively. For all material types, Salmonella reductions were highest on wet-inoculated clean coupons; L. monocytogenes varied by material type. Weibull and biphasic models were a better fit of respective pathogen die-off curves than linear models. Overall, faster die-off rates were seen for wet inoculated and clean materials. Since pathogen populations remained viable over the study duration and both inoculum type and coupon condition impacted survival, frequent sanitation or replacement of food contact surfaces during the operational day is needed to reduce the risk of cross-contamination.
Collapse
Affiliation(s)
- Claire M Murphy
- School of Food Science, Washington State University - Irrigated Agriculture Research and Extension Center, Prosser, WA, USA
| | - Loretta M Friedrich
- Department of Food Science, University of Florida - Citrus Research and Education Center, Lake Alfred, FL, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Michelle D Danyluk
- Department of Food Science, University of Florida - Citrus Research and Education Center, Lake Alfred, FL, USA.
| |
Collapse
|
2
|
Khouja BA, Salazar JK, Babaria H, Fay ML, Stewart DS. Method of Inoculation Influences the Survival of Salmonella enterica on Retail and Orchard Peaches. J Food Prot 2024; 87:100289. [PMID: 38701972 DOI: 10.1016/j.jfp.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Challenge studies associated with fruits and vegetables generally utilize wet bacterial inoculation methods. However, a recent salmonellosis outbreak in the U.S. was linked to peaches plausibly contaminated via fugitive dust from a nearby animal operation. This outbreak has highlighted the need for a suitable inert carrier which can be used for the dry transfer of Salmonella enterica to produce. The purpose of this study was 1) to examine the population stability of S. enterica and its surrogate, Enterococcus faecium, in different dry matrices during extended storage to identify suitable carriers and 2) to evaluate the survival of S. enterica on peaches based on the mode of contamination (i.e., wet vs. dry). S. enterica and E. faecium were cultivated on tryptic soy agar (TSA) and inoculated into corn-cob small animal litter, sand, or silica at 10-11 log CFU/g. Matrices were mixed by hand and stored at 25°C and 33% relative humidity for up to 120 d. S. enterica remained relatively stable in the silica and litter, with no significant decrease in population after 14 and 28 d, respectively. E. faecium significantly reduced in all matrices, with the greatest reduction observed in silica (2.86 log CFU/g after 120 d). Additional carriers would need to be assessed for E. faecium which could maintain its population stability. Silica was ultimately selected for the dry carrier of S. enterica. Peaches available at retail or from orchards were inoculated with S. enterica using the silica carrier or by spot or dip inoculation methods at 5 log CFU/peach and stored at 5°C and 80% relative humidity for up to 28 d. The population of S. enterica significantly reduced on all peaches except for the dry inoculated orchard peaches, where the population remained stable (4.62 ± 0.35 log CFU/peach after 28 d). Results from this study determined that the mode of contamination influences the survival of S. enterica on peaches and that dry inoculation methods should be considered for produce in some instances.
Collapse
Affiliation(s)
- Bashayer A Khouja
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Joelle K Salazar
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Hetvi Babaria
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Megan L Fay
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Diana S Stewart
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA.
| |
Collapse
|
3
|
Bolten S, Mowery J, Gu G, Redding M, Kroft B, Luo Y, Nou X. Listeria monocytogenes loss of cultivability on carrot is associated with the formation of mesosome-like structures. Int J Food Microbiol 2023; 390:110121. [PMID: 36807003 DOI: 10.1016/j.ijfoodmicro.2023.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Raw carrot is known to have antimicrobial activity against Listeria monocytogenes, but the mechanism of action has not been fully elucidated. In this study, we examined carrot antilisterial activity against several strains of Listeria species (including L. grayi, L. innocua, L. seeligeri, and L. welshimeri) and L. monocytogenes. A representative strain of L. monocytogenes was subsequently used for further characterizing carrot antilisterial activity. Exposure to fresh-cut carrot for 15 min resulted in a similar loss of cultivability, ranging from 2.5 to 4.7 log units, across all Listeria strains evaluated. L. monocytogenes recovered from the fresh-cut surface of different raw carrots was 1.6 to 4.1 log lower than levels obtained from paired boiled carrot samples with abolished antilisterial activity. L. monocytogenes levels recovered from fresh-cut carrot were 2.8 to 3.1 log lower when enumerated by culture-dependent methods than by the culture-independent method of PMAxx-qPCR, a qPCR assay that is performed using DNA pre-treated to selectively sequester DNA from cells with injured membranes. These results suggested that L. monocytogenes loss of cultivability on fresh-cut carrot was not associated with a loss of L. monocytogenes cell membrane integrity and putative cell viability. Transmission electron microscopy imaging revealed that L. monocytogenes rapidly formed mesosome-like structures upon exposure to carrot fresh-cut surface but not upon exposure to boiled carrot surface, suggesting there may be an association between the formation of these mesosome-like structures and a loss of cultivability in L. monocytogenes. However, further research is necessary to conclude the causality of this association.
Collapse
Affiliation(s)
- Samantha Bolten
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Marina Redding
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Brenda Kroft
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States of America
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, United States of America.
| |
Collapse
|
4
|
Practice and Progress: Updates on Outbreaks, Advances in Research, and Processing Technologies for Low-moisture Food Safety. J Food Prot 2023; 86:100018. [PMID: 36916598 DOI: 10.1016/j.jfp.2022.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 12/31/2022]
Abstract
Large, renowned outbreaks associated with low-moisture foods (LMFs) bring to light some of the potential, inherent risks that accompany foods with long shelf lives if pathogen contamination occurs. Subsequently, in 2013, Beuchat et al. (2013) noted the increased concern regarding these foods, specifically noting examples of persistence and resistance of pathogens in low-water activity foods (LWAFs), prevalence of pathogens in LWAF processing environments, and sources of and preventive measures for contamination of LWAFs. For the last decade, the body of knowledge related to LMF safety has exponentially expanded. This growing field and interest in LMF safety have led researchers to delve into survival and persistence studies, revealing that some foodborne pathogens can survive in LWAFs for months to years. Research has also uncovered many complications of working with foodborne pathogens in desiccated states, such as inoculation methods and molecular mechanisms that can impact pathogen survival and persistence. Moreover, outbreaks, recalls, and developments in LMF safety research have created a cascading feedback loop of pushing the field forward, which has also led to increased attention on how industry can improve LMF safety and raise safety standards. Scientists across academia, government agencies, and industry have partnered to develop and evaluate innovate thermal and nonthermal technologies to use on LMFs, which are described in the presented review. The objective of this review was to describe aspects of the extensive progress made by researchers and industry members in LMF safety, including lessons-learned about outbreaks and recalls, expansion of knowledge base about pathogens that contaminate LMFs, and mitigation strategies currently employed or in development to reduce food safety risks associated with LMFs.
Collapse
|
5
|
Wu Z, Huang C, Dong Y, Zhao B, Chen Y. Gold core @ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Igo MJ, Strawn LK, Schaffner DW. Initial and Final Cell Concentrations Significantly Influence the Maximum Growth Rate of Listeria monocytogenes in Published Literature Data for Whole Intact Fresh Produce. J Food Prot 2022; 85:987-992. [PMID: 35435963 DOI: 10.4315/jfp-21-456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/07/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes has shown the ability to grow on fresh uncut produce; however, the factors that control growth are not well understood. Peer-reviewed journal articles (n = 29) meeting the inclusion criteria and related to the growth of L. monocytogenes on fresh produce were found through university library databases and Google Scholar searches. Growth models were fit to each of the extracted 130 data sets to estimate log CFU per day rates of growth by using the DMFit tool. Multiple linear stepwise regression models for factors influencing growth rate were developed using R software. Factors included were temperature, nutrient level of inoculation buffer, initial cell concentration, final cell concentration, inoculation method, container permeability, and surface characteristics. The full model produced adjusted R2, Akaike information criterion, and root mean square error values of 0.41, 488, and 1.61, respectively. Stepwise regression resulted in a reduced model with parameters for incubation temperature, inoculation buffer type, initial and final cell concentrations, container characteristics, and produce surface characteristics. Model fit statistics improved slightly in the reduced model. A further reduced three-parameter model included storage temperature and initial and final cell concentrations, with interaction terms. This three-parameter model had adjusted R2, Akaike information criterion, and root mean square error values of 0.66, 417, and 1.24, respectively. Incubation temperature (P = 1.00E-09) initial cell concentration (P = 3.05E-12), and final cell concentration (P = 4.17E-09) all had highly significant effects on maximum growth rate. Our findings show the importance of inoculum concentration and produce microbial carrying capacity on the estimated growth rate and highlight the overall importance that temperature has on growth rate. Future experiments should consider initial inoculum concentration carefully when conducting growth studies for L. monocytogenes on whole produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Matthew J Igo
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901
| | - Laura K Strawn
- Department of Food Science, Virginia Polytechnical University, Blacksburg, Virginia 24060, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901
| |
Collapse
|