1
|
Song Y, Cui H, Zong Y, Yin S. Effect of ecoliteracy on farmers' participation in pesticide packaging waste governance behavior in rural North China. Sci Rep 2024; 14:23103. [PMID: 39367047 PMCID: PMC11452502 DOI: 10.1038/s41598-024-73858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Farmers' participation in pesticide packaging waste (PPW) governance is important for improving agricultural pollution and achieving sustainable agricultural development. By incorporating the theory of planned behavior, value-belief-norm theory, cognition and behavior theory etc., we construct a theoretical model comprising "ecoliteracy-farmers' WTP in PPW governance-participation in PPW governance behavior." This study investigates how ecoliteracy affects farmers' participation in PPW governance and explores the mediating effect of farmers' willingness to participate (WTP) in PPW governance. We use structural equation modeling to analyze data collected from a questionnaire survey including 1118 samples of Chinese farmers. The results show that (1) Ecoliteracy significantly affects farmers' WTP in PPW governance. Ecological cognition, emotion, values, and knowledge and skills positively affect WTP in PPW governance, while ecological cognition and ecological knowledge and skills significantly affect participation in PPW governance behavior. (2) Farmers' WTP in PPW governance mediates ecoliteracy and governance participation behavior. (3) Heterogeneity analysis reveals that different planting scales, different planting categories, and receiving/not receiving government project support have different effects on farmers' participation in governance behavior. Farmers in the large-scale group are more likely to participate in governance than those in the medium- and small-scale groups, and farmers in the mixed grain and economic category are more likely to participate in governance than those in the economic and grain categories. Furthermore, farmers who receive government support are more likely to participate in governance than those who do not. Our results can serve as a policy making reference for promoting PPW governance in various regions.
Collapse
Affiliation(s)
- Yang Song
- College of Economics and Management, Hebei Agricultural University, Baoding, 071000, China
| | - Haixia Cui
- College of Economics and Management, Hebei Agricultural University, Baoding, 071000, China
| | - Yixiang Zong
- College of Economics and Management, Hebei Agricultural University, Baoding, 071000, China.
| | - Shi Yin
- College of Economics and Management, Hebei Agricultural University, Baoding, 071000, China
| |
Collapse
|
2
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
3
|
Residue levels and risk assessment of pesticides in litchi and longan of China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zhang Y, Wang M, Silipunyo T, Huang H, Yin Q, Han B, Wang M. Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175685. [PMID: 36080451 PMCID: PMC9458175 DOI: 10.3390/molecules27175685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Triflumezopyrim, a novel mesoionic insecticide used to control planthoppers, is a potential substitute for imidacloprid. In this study, triflumezopyrim and imidacloprid residues in rice were determined using a quick, easy, cheap, effective, rugged, and safe procedure combined with ultra-high-performance liquid chromatography–tandem mass spectrometry. The limit of quantification of both triflumezopyrim and imidacloprid was 0.01 mg kg−1, and the average recovery values were 94–104% and 91–106%, with relative standard deviations (RSDs) of 1.1–1.4% and 2.1–3.4% (n = 5), respectively. The consumer protection level was assessed by calculating the theoretical maximum daily intake using the reported maximum residue limits of triflumezopyrim and imidacloprid. The established method was successfully applied to 200 commercial rice samples collected from four provinces in China, and their potential public health risks were assessed using triflumezopyrim and imidacloprid residues. The risk associated with triflumezopyrim and imidacloprid dietary intake was assessed by calculating the national estimated short-term intake and the acute reference dose percentage (%ARfD). The results show that the theoretical maximum daily intake (NEDI) values of triflumezopyrim and imidacloprid in different age and gender groups were 0.219–0.543 and 0.377–0.935 μg kg−1 d−1 bw, and the risk quotient (RQ) values were 0.188–0.467% and 0.365–0.906%, respectively. The acute reference dose (%ARfD) of triflumezopyrim and imidaclopridin ranged from 0.615 to 0.998% and from 0.481 to 0.780%, respectively.
Collapse
Affiliation(s)
- Yue Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Meiran Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Thiphavanh Silipunyo
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
- Plant Protection Center, Department of Agriculture, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Haizhu Huang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Qingchun Yin
- Hainan Institute for Food Control, Haikou 570311, China
| | - Bingjun Han
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
- Correspondence: (B.H.); (M.W.)
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
- Correspondence: (B.H.); (M.W.)
| |
Collapse
|