1
|
Martin BL, Reynolds KJ, Fazzalari NL, Bottema MJ. Modelling the Effects of Growth and Remodelling on the Density and Structure of Cancellous Bone. Bull Math Biol 2024; 86:37. [PMID: 38436708 PMCID: PMC10912124 DOI: 10.1007/s11538-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
A two-stage model is proposed for investigating remodelling characteristics in bone over time and distance to the growth plate. The first stage comprises a partial differential equation (PDE) for bone density as a function of time and distance from the growth plate. This stage clarifies the contributions to changes in bone density due to remodelling and growth processes and tracks the rate at which new bone emanates from the growth plate. The second stage consists of simulating the remodelling process to determine remodelling characteristics. Implementing the second stage requires the rate at which bone moves away from the growth plate computed during the first stage. The second stage is also needed to confirm that remodelling characteristics predicted by the first stage may be explained by a realistic model for remodelling and to compute activation frequency. The model is demonstrated on microCT scans of tibia of juvenile female rats in three experimental groups: sham-operated control, oestrogen deprived, and oestrogen deprived followed by treatment. Model predictions for changes in bone density and remodelling characteristics agree with the literature. In addition, the model provides new insight into the role of treatment on the density of new bone emanating from the growth plate and provides quantitative descriptions of changes in remodelling characteristics beyond what has been possible to ascertain by experimentation alone.
Collapse
Affiliation(s)
- Brianna L Martin
- Marine Spatial Ecology Laboratory, School of the Environment, The University of Queensland, Level 5, Goddard Building, St. Lucia, QLD, 4072, Australia
| | - Karen J Reynolds
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley Campus, 1284 South Rd, Clovelly Park, SA, 5042, Australia
| | - Nicola L Fazzalari
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley Campus, 1284 South Rd, Clovelly Park, SA, 5042, Australia
| | - Murk J Bottema
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley Campus, 1284 South Rd, Clovelly Park, SA, 5042, Australia.
| |
Collapse
|
2
|
Young SAE, Rummler M, Taïeb HM, Garske DS, Ellinghaus A, Duda GN, Willie BM, Cipitria A. In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events. Bone 2022; 161:116432. [PMID: 35569733 DOI: 10.1016/j.bone.2022.116432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal, as well as cortical and trabecular bone of the distal femur and proximal tibia are shown. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.
Collapse
Affiliation(s)
- Sarah A E Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Hubert M Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Biodonostia Health Research Institute, Group of Bioengineering in Regeneration and Cancer, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Lovecchio J, Betti V, Cortesi M, Ravagli E, Severi S, Giordano E. Design of a custom-made device for real-time optical measurement of differential mineral concentrations in three-dimensional scaffolds for bone tissue engineering. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210791. [PMID: 35242342 PMCID: PMC8753176 DOI: 10.1098/rsos.210791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Monitoring bone tissue engineered (TEed) constructs during their maturation is important to ensure the quality of applied protocols. Several destructive, mainly histochemical, methods are conventionally used to this aim, requiring the sacrifice of the investigated samples. This implies (i) to plan several scaffold replicates, (ii) expensive and time consuming procedures and (iii) to infer the maturity level of a given tissue construct from a cognate replica. To solve these issues, non-destructive techniques such as light spectroscopy-based methods have been reported to be useful. Here, a miniaturized and inexpensive custom-made spectrometer device is proposed to enable the non-destructive analysis of hydrogel scaffolds. Testing involved samples with a differential amount of calcium salt. When compared to a reference standard device, this custom-made spectrometer demonstrates the ability to perform measurements without requiring elaborate sample preparation and/or a complex instrumentation. This preliminary study shows the feasibility of light spectroscopy-based methods as useful for the non-destructive analysis of TEed constructs. Based on these results, this custom-made spectrometer device appears as a useful option to perform real-time/in-line analysis. Finally, this device can be considered as a component that can be easily integrated on board of recently prototyped bioreactor systems, for the monitoring of TEed constructs during their conditioning.
Collapse
Affiliation(s)
- J. Lovecchio
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
| | - V. Betti
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
| | - M. Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum—University of Bologna, Ozzano Emilia (BO), Italy
| | - E. Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - S. Severi
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum—University of Bologna, Ozzano Emilia (BO), Italy
| | - E. Giordano
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum—University of Bologna, Ozzano Emilia (BO), Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna (BO), Italy
| |
Collapse
|
4
|
Buccino F, Colombo C, Vergani LM. A Review on Multiscale Bone Damage: From the Clinical to the Research Perspective. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1240. [PMID: 33807961 PMCID: PMC7962058 DOI: 10.3390/ma14051240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
The investigation of bone damage processes is a crucial point to understand the mechanisms of age-related bone fractures. In order to reduce their impact, early diagnosis is key. The intricate architecture of bone and the complexity of multiscale damage processes make fracture prediction an ambitious goal. This review, supported by a detailed analysis of bone damage physical principles, aims at presenting a critical overview of how multiscale imaging techniques could be used to implement reliable and validated numerical tools for the study and prediction of bone fractures. While macro- and meso-scale imaging find applications in clinical practice, micro- and nano-scale imaging are commonly used only for research purposes, with the objective to extract fragility indexes. Those images are used as a source for multiscale computational damage models. As an example, micro-computed tomography (micro-CT) images in combination with micro-finite element models could shed some light on the comprehension of the interaction between micro-cracks and micro-scale bone features. As future insights, the actual state of technology suggests that these models could be a potential substitute for invasive clinical practice for the prediction of age-related bone fractures. However, the translation to clinical practice requires experimental validation, which is still in progress.
Collapse
Affiliation(s)
| | | | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20154 Milano, Italy; (F.B.); (C.C.)
| |
Collapse
|
5
|
The Influence of Ficus deltoidea in Preserving Alveolar Bone in Ovariectomized Rats. Vet Med Int 2020; 2020:8862489. [PMID: 33456747 PMCID: PMC7785368 DOI: 10.1155/2020/8862489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Ficus deltoidea has been shown to possess antioxidant properties that could prevent the development of chronic inflammatory bone diseases. In this study, the efficacy of F. deltoidea in preventing alveolar bone resorption in osteoporotic rats induced by ovariectomy (OVX) was investigated. Twenty-four female Wistar rats were divided into four groups (n = 6) consisting of sham-operated (SO), ovariectomized control (OVXN), ovariectomized treated with estrogen (OVXP), and ovariectomized treated with F. deltoidea extract (OVXF). At the beginning of the study, two nonovariectomized, healthy rats were sacrificed to serve as baseline (BL). Treatment of the rats commenced two weeks after ovariectomy—the OVXP rats that served as positive control received Premarin® (64.5 μg/kg body weight), while OVXF rats were given F. deltoidea (800 mg/kg body weight); both agents were administered orally for two months. The negative control group of rats (OVXN) and the SO group received deionized water, also administered via oral gavage. At necropsy, morphometric assessment of the interradicular bone of the first molar was carried out using a micro-CT scanner, while quantification of osteoclasts and osteoblasts was performed histologically. The results showed that no statistically significant differences among the groups (p > 0.05) for bone morphometric assessment. However, trabecular thickness in the OVXF group was similar to BL, while trabecular separation and alveolar bone loss height were lower than those of the OVXN group. Histologically, the OVXF group demonstrated a significantly lower number of osteoclasts and a higher number of osteoblasts compared with OVXN (p=0.008 and p=0.019, respectively; p < 0.05). In conclusion, F. deltoidea has the capacity to prevent alveolar bone loss in ovariectomy-induced osteoporosis rats by potentially preserving trabecular bone microarchitecture and to decrease osteoclast and increase osteoblast cell count.
Collapse
|
6
|
Gilday R, Richard H, Beauchamp G, Fogarty U, Laverty S. Abundant osteoclasts in the subchondral bone of the juvenile Thoroughbred metacarpus suggest an important role in joint maturation. Equine Vet J 2020; 52:733-742. [PMID: 31972056 DOI: 10.1111/evj.13235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The administration of bisphosphonate medications, which target osteoclastic-bone remodelling, to juvenile and adult racehorses is a matter of debate owing to concerns that these molecules remain bound to the bone-mineralised matrix and may interfere with subsequent bone growth, adaptation to exercise and healing of bone microdamage in equine athletes. Osteoclasts participate in endochondral ossification, subchondral bone remodelling and bone repair. There is a knowledge gap on the role of equine osteoclast biology in the growth and maturation of joint surfaces and this information is important to inform judicious bisphosphonate use. OBJECTIVES Measure and compare the osteoclast density in the subchondral bone of Thoroughbred (TB) distal third metacarpi (McIII) at different sites, varying depths from the articular surface and with age (0-84 months). STUDY DESIGN Ex vivo cadaveric study. METHODS McIIIs from foals, yearlings and adults were collected, fixed in formaldehyde and stored at 4°C. Sections were cut from the lateral hemi-metacarpus, stained and scored for cartilage degeneration. Osteoclasts were counted on immunohistochemically (Cathepsin K) stained sections. Osteoclast density was compared in regions of interest (ROIs-the sagittal ridge, axial and abaxial condyle) and also at two depths (0-3 mm and 3-6 mm) into the subchondral bone below the osteochondral junction. RESULTS The osteoclast density was consistently highest in the subchondral cortical bone plate (0-3 mm) when compared with the deeper trabecular bone in all age groups. Furthermore, the osteoclast density was significantly higher in juvenile Thoroughbreds (foals and yearlings) within both sites in the subchondral bone when compared with adults. MAIN LIMITATIONS The number of specimens available for study was restricted. CONCLUSIONS Osteoclasts are important in normal McIII epiphyseal and articular surface maturation and have a propensity to localise at the osteochondral junction and subchondral cortical bone plate zone in juvenile Thoroughbreds.
Collapse
Affiliation(s)
- Rebecca Gilday
- Comparative Orthopaedic Research Laboratory, Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Guy Beauchamp
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | | | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
7
|
Zhang Y, Dall’Ara E, Viceconti M, Kadirkamanathan V. A new method to monitor bone geometry changes at different spatial scales in the longitudinal in vivo μCT studies of mice bones. PLoS One 2019; 14:e0219404. [PMID: 31329619 PMCID: PMC6645529 DOI: 10.1371/journal.pone.0219404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Longitudinal studies of bone adaptation in mice using in vivo micro-computed tomography (μCT) have been commonly used for pre-clinical evaluation of physical and pharmacological interventions. The main advantage of this approach is to use each mouse as its own control, reducing considerably the sample size required by statistical power analysis. To date, multi-scale estimation of bone adaptations become essential since the bone activity that takes place at different scales may be associated with different bone mechanisms. Measures of bone adaptations at different time scales have been attempted in a previous study. This paper extends quantification of bone activity at different spatial scales with a proposition of a novel framework. The method involves applying level-set method (LSM) to track the geometric changes from the longitudinal in vivo μCT scans of mice tibia. Bone low- and high-spatial frequency patterns are then estimated using multi-resolution analysis. The accuracy of the framework is quantified by applying it to two times separated scanned images with synthetically manipulated global and/or local activity. The Root Mean Square Deviation (RMSD) was approximately 1.5 voxels or 0.7 voxels for the global low-spatial frequency or local high-spatial frequency changes, respectively. The framework is further applied to the study of bone changes in longitudinal datasets of wild-type mice tibiae over time and space. The results demonstrate the ability for the spatio-temporal quantification and visualisation of bone activity at different spatial scales in longitudinal studies thus providing further insight into bone adaptation mechanisms.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Oncology & Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Bologna Area, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Visakan Kadirkamanathan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Xu Y, Meng H, Yin H, Sun Z, Peng J, Xu X, Guo Q, Xu W, Yu X, Yuan Z, Xiao B, Wang C, Wang Y, Liu S, Lu S, Wang Z, Wang A. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction. Exp Ther Med 2017; 15:93-102. [PMID: 29375677 PMCID: PMC5766073 DOI: 10.3892/etm.2017.5389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/31/2017] [Indexed: 11/28/2022] Open
Abstract
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12–24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean ‘pin thickness’, bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo, quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.
Collapse
Affiliation(s)
- Yichi Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China.,School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Heyong Yin
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhen Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaolong Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoming Yu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bo Xiao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Cheng Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhaoxu Wang
- Testing Department of Biomaterials and Tissue Engineering Products, Chinese National Institutes for Food and Drug Control, Beijing 100050, P.R. China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
9
|
Segev G, Meltzer H, Shipov A. Does Secondary Renal Osteopathy Exist in Companion Animals? Vet Clin North Am Small Anim Pract 2016; 46:1151-62. [PMID: 27436331 DOI: 10.1016/j.cvsm.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Secondary renal hyperparathyroidism is an inevitable consequence of chronic kidney disease. In human patients, the disease is associated with decreased bone quality and increased fracture risk. Recent evidence suggests that bone quality is also decreased in companion animals, more pronouncedly in cats compared with dogs, likely because of a longer disease course. The clinical significance of these findings is yet to be determined. However, clinicians should keep in mind that animals with chronic kidney disease have decreased bone quality and increased fracture risk.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel.
| | - Hagar Meltzer
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| |
Collapse
|
10
|
Armencea G, Berce C, Rotaru H, Bran S, Leordean D, Coada C, Todea M, Jula CA, Gheban D, Baciut G, Baciut M, Campian RS. Micro-CT and histological analysis of Ti6Al7Nb custom made implants with hydroxyapatite and SiO2-TiO2 coatings in a rabbit model. ACTA ACUST UNITED AC 2015; 88:408-14. [PMID: 26609278 PMCID: PMC4632904 DOI: 10.15386/cjmed-479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 01/22/2023]
Abstract
Background and aim Bone defect reconstruction in the maxillofacial area comes as a necessity after traumatic, oncological or congenital pathology. Custom made implant manufacturing, such as selective laser melting (SLM), is very helpful when bone reconstruction is needed. In the present study we assessed the osseointegration of custom made implants made of Ti6Al7Nb with two different coatings: SiO2-TiO2 and hydroxyapatite, by comparing the bone mineral density (BMD) measured on micro-CT and the histological mineralized bone surrounding the implants. Methods Custom made – cylindrical type – implants were produced by selective laser melting, coated with SiO2-TiO2 and hydroxyapatite and implanted in the rabbit femur. The animals (divided into 3 groups) were sacrificed at 1, 3 and 6 months and the implants were removed together with the surrounding bone. Bone mineral density and histological examination of the bone-implant surface was performed for each group. Results BMD and histological examination of the samples determined the quantity of mineralized bone at the implant site, showing a good percentage of mineralized bone for the coated implants at 1, 3 and 6 months. The measurements for the implants without coating showed a significant lower quantity of mineralized bone at 3 months compared with the implants with coating, and a good quantity of mineralized bone at 6 months, showing a process of demineralization followed by remineralization in the last month. The measurements of BMD showed similar results with the histological examination. Conclusions The use of micro-CT and the measurement of BMD are a reliable, minimally invasive and a quick method of osseointegration assessment.
Collapse
Affiliation(s)
- Gabriel Armencea
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Berce
- Laboratory Animal Facility, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horatiu Rotaru
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Leordean
- Department of Manufacturing Engineering, Technical University, Cluj-Napoca, Romania
| | - Camelia Coada
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Milica Todea
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University
| | - Camelia Augusta Jula
- Student, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Septimiu Campian
- Department of Oral Rehabilitation, Oral Health and Management of Dental Office, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|