1
|
Antunes J, Pinto CIG, Campello MPC, Santos P, Mendes F, Paulo A, Sampaio JM. Utility of realistic microscopy-based cell models in simulation studies of nanoparticle-enhanced photon radiotherapy. Biomed Phys Eng Express 2024; 10:025015. [PMID: 38237176 DOI: 10.1088/2057-1976/ad2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
To enhance the effect of radiation on the tumor without increasing the dose to the patient, the combination of high-Z nanoparticles with radiotherapy has been proposed. In this work, we investigate the effects of the physical parameters of nanoparticles (NPs) on the Dose Enhancement Factor (DEF), and on the Sensitive Enhancement Ratio (SER) by applying a version of the Linear Quadratic Model. A method for constructing voxelized realistic cell geometries in Monte Carlo simulations from confocal microscopy images was developed and applied to Gliobastoma Multiforme cell lines (U87 and U373). The comparison of simulations with realistic geometry and spherical geometry shows that there is significant impact on the survival curves obtained for the same irradiation conditions. Using this model, the DEF and the SER are determined as a function of the concentration, size and distribution of gold nanoparticles within the cell. For small NPs,dAuNP= 10 nm, no clear trend in the DEF and SER was observed when the number of NPs within the cell increases. Experimentally, the variable number of NPs measured inside the U373 cells (ranging between 1.48 × 105and 1.19 × 106) also did not influence much the observed cell survival upon irradiation of the cells with a Co-60 source. The same lack of trend is obtained when the Au content in the cell is kept constant, 0.897 mg/g, but the size of the NPs is changed. However, if the number of NPs is kept constant (7.91 × 105) and the size changes, there is a critical diameter above which the dose effect increases significantly. Using the realistic geometries, it was verified that the key parameter for the DEF and the SER enhancement is the volume fraction of Au in the cell, with NP size being a more important parameter than the number of NPs.
Collapse
Affiliation(s)
- Joana Antunes
- Laboratório de Instrumentação e Física Experimental de Partículas, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
- Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, 1749-016 Lisboa, Portugal
| | - Catarina I G Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Jorge M Sampaio
- Laboratório de Instrumentação e Física Experimental de Partículas, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
- Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Chow JCL, Jubran S. Depth Dose Enhancement in Orthovoltage Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study. MICROMACHINES 2023; 14:1230. [PMID: 37374815 DOI: 10.3390/mi14061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND This study was to examine the depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy for skin treatment by investigating the impact of various photon beam energies, nanoparticle materials, and nanoparticle concentrations. METHODS A water phantom was utilized, and different nanoparticle materials (gold, platinum, iodine, silver, iron oxide) were added to determine the depth doses through Monte Carlo simulation. The clinical 105 kVp and 220 kVp photon beams were used to compute the depth doses of the phantom at different nanoparticle concentrations (ranging from 3 mg/mL to 40 mg/mL). The dose enhancement ratio (DER), which represents the ratio of the dose with nanoparticles to the dose without nanoparticles at the same depth in the phantom, was calculated to determine the dose enhancement. RESULTS The study found that gold nanoparticles outperformed the other nanoparticle materials, with a maximum DER value of 3.77 at a concentration of 40 mg/mL. Iron oxide nanoparticles exhibited the lowest DER value, equal to 1, when compared to other nanoparticles. Additionally, the DER value increased with higher nanoparticle concentrations and lower photon beam energy. CONCLUSIONS It is concluded in this study that gold nanoparticles are the most effective in enhancing the depth dose in orthovoltage nanoparticle-enhanced skin therapy. Furthermore, the results suggest that increasing nanoparticle concentration and decreasing photon beam energy lead to increased dose enhancement.
Collapse
Affiliation(s)
- James C L Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Sama Jubran
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
3
|
Zhang C, Li X, Lu J, Li C, Wang Y, Xu X, Yang X. Enhanced electron beam and X-ray beam therapy by applying nanoparticle heterojunctions: A Monte Carlo simulation. Appl Radiat Isot 2023; 199:110869. [PMID: 37267775 DOI: 10.1016/j.apradiso.2023.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Cancer has become one of the major diseases that seriously threaten human health. In order to improve the therapeutic gain ratio (TGF) of conventional X-ray and electron beams, we studied the dose enhancement effect and secondary electrons emission of Au-Fe nanoparticle heterostructures by Monte Carlo method. Under the irradiation of 6 MeV photon and 6 MeV electron beams, the Au-Fe mixture has a dose enhancement effect. For this reason, we explored the secondary electrons production that leads to dose enhancement. For 6 MeV electron beam irradiation, Au-Fe nanoparticle heterojunctions have an higher electrons emission than Au and Fe nanoparticles. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.00024. For 6 MV X-ray beam irradiation, Au nanoparticle and Au-Fe nanoparticle heterojunction have similar electrons emission, while Fe nanoparticle has the lowest one. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.000118. This study contributes to improve the tumor-killing effect of conventional X-ray radiotherapy treatment and has guiding significance for the research of new nanoparticles.
Collapse
Affiliation(s)
- Chuhan Zhang
- College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoyi Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Jingbin Lu
- College of Physics, Jilin University, Changchun 130012, China.
| | - Chengqian Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Yu Wang
- College of Physics, Jilin University, Changchun 130012, China
| | - Xu Xu
- College of Physics, Jilin University, Changchun 130012, China
| | - Xiangshan Yang
- College of Public Health, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Spina A, Chow JCL. Dosimetric Impact on the Flattening Filter and Addition of Gold Nanoparticles in Radiotherapy: A Monte Carlo Study on Depth Dose Using the 6 and 10 MV FFF Photon Beams. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207194. [PMID: 36295262 PMCID: PMC9609907 DOI: 10.3390/ma15207194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/04/2023]
Abstract
PURPOSE This phantom study investigated through Monte Carlo simulation how the dose enhancement varied with depth, when gold nanoparticles (NPs) were added using the flattening filter-free (FFF) photon beams in gold NP-enhanced radiotherapy. METHOD A phantom with materials varying from pure water to a mixture of water and gold NPs at different concentrations (3-40 mg/mL) were irradiated by the 6 and 10 MV flattening filter (FF) and FFF photon beams. Monte Carlo simulations were carried out to determine the depth doses along the central beam axis of the phantom up to a depth of 40 cm. The dose enhancement ratio (DER) and FFF enhancement ratio (FFFER) were calculated based on the Monte Carlo results. RESULTS The DER values were found decreased with an increase of depth and increase of NP concentration in the phantom. For the maximum NP concentration of 40 mg/mL, the DER values decreased 6.9, 12, 4.6 and 7.2% at a phantom depth from 2 to 40 cm, using the 6 MV FF, 6 MV FFF, 10 MV FF and 10 MV FFF photon beams, respectively. The maximum DER values for the 6 MV beams were 1.08 (FF) and 1.14 (FFF), while those for the 10 MV beams were 1.04 (FF) and 1.07 (FFF). When the FF was removed from the linear accelerator head, the FFFER showed a more significant increase of dose enhancement for the 6 MV beams (1.057) than the 10 MV (1.031). CONCLUSION From the DER and FFFER values based on the Monte Carlo results, it is concluded that the dose enhancement with depth was dependent on the NP and beam variables, namely, NP concentration, presence of FF in the beam and beam energy. Dose enhancement was more significant when using the lower photon beam energy (i.e., 6 MV), FFF photon beam and higher NP concentration in the study.
Collapse
Affiliation(s)
- Armando Spina
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
5
|
Sadiq A, Chow JCL. Evaluation of Dosimetric Effect of Bone Scatter on Nanoparticle-Enhanced Orthovoltage Radiotherapy: A Monte Carlo Phantom Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172991. [PMID: 36080028 PMCID: PMC9457938 DOI: 10.3390/nano12172991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/04/2023]
Abstract
In nanoparticle (NP)-enhanced orthovoltage radiotherapy, bone scatter affected dose enhancement at the skin lesion in areas such as the forehead, chest wall, and knee. Since each of these treatment sites have a bone, such as the frontal bone, rib, or patella, underneath the skin lesion and this bone is not considered in dose delivery calculations, uncertainty arises in the evaluation of dose enhancement with the addition of NPs in radiotherapy. To investigate the impact of neglecting the effect of bone scatter, Monte Carlo simulations based on heterogeneous phantoms were carried out to determine and compare the dose enhancement ratio (DER), when a bone was and was not present underneath the skin lesion. For skin lesions with added NPs, Monte Carlo simulations were used to calculate the DER values using different elemental NPs (gold, platinum, silver, iodine, as well as iron oxide), in varying NP concentrations (3−40 mg/mL), at two different photon beam energies (105 and 220 kVp). It was found that DER values at the skin lesion increased with the presence of bone when there was a higher atomic number of NPs, a higher NP concentration, and a lower photon beam energy. When comparing DER values with and without bone, using the same NP elements, NP concentration, and beam energy, differences were found in the range 0.04−3.55%, and a higher difference was found when the NP concentration increased. By considering the uncertainty in the DER calculation, the effect of bone scatter became significant to the dose enhancement (>2%) when the NP concentration was higher than 18 mg/mL. This resulted in an underestimation of dose enhancement at the skin lesion, when the bone underneath the tumour was neglected during orthovoltage radiotherapy.
Collapse
Affiliation(s)
- Afia Sadiq
- Department of Medical Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
6
|
Influence of PEG-coated Bismuth Oxide Nanoparticles on ROS Generation by Electron Beam Radiotherapy. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2022. [DOI: 10.2478/pjmpe-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their effectiveness as radiosensitizers. Optimization of surface coating is a crucial element to ensure the successful application of NPs as a radiosensitizer in radiotherapy. This study aims to investigate the influence of bismuth oxide NPs (BiONPs) coated with PEG on reactive oxygen species (ROS) generation on HeLa cervical cancer cell line.
Material and methods: Different PEG concentrations (0.05, 0.10, 0.15 and 0.20 mM) were used in the synthesis of the NPs. The treated cells were irradiated with 6 and 12 MeV electron beams with a delivered dose of 3 Gy. The reactive oxygen species (ROS) generation was measured immediately after and 3 hours after irradiation.
Results: The intracellular ROS generation was found to be slightly influenced by electron beam energy and independent of the PEG concentrations. Linear increments of ROS percentages over the 3 hours of incubation time were observed.
Conclusions: Finally, the PEG coating might not substantially affect the ROS generated and thus emphasizing the functionalized BiONPs application as the radiosensitizer for electron beam therapy.
Collapse
|
7
|
Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. RADIATION 2022. [DOI: 10.3390/radiation2010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interest in combining metallic nanoparticles, such as iron (SPIONs), gold (AuNPs) and bismuth oxide (BiONPs), with radiotherapy has increased due to the promising therapeutic advantages. While the underlying physical mechanisms of NP-enhanced radiotherapy have been extensively explored, only a few research works were motivated to quantify its contribution in an experimental dosimetry setting. This work aims to explore the feasibility of radiochromic films to measure the physical dose enhancement (DE) caused by the release of secondary electrons and photons during NP–radiotherapy interactions. A 10 mM each of SPIONs, AuNPs or BiONPs was loaded into zipper bags packed with GAFCHROMIC™ EBT3 films. The samples were exposed to a single radiation dose of 4.0 Gy with clinically relevant beams. Scanning was conducted using a flatbed scanner in red-component analysis for optimum sensitivity. Experimental dose enhancement factors (DEFExperimental) were then calculated using the ratio of absorbed doses (with/without NPs) converted from the films’ calibration curves. DEFExperimental for all NPs showed no significant physical DE beyond the uncertainty limits (p > 0.05). These results suggest that SPIONs, AuNPs and BiONPs might potentially enhance the dose in these clinical beams. However, changes in NPs concentration, as well as dosimeter sensitivity, are important to produce observable impact.
Collapse
|
9
|
Tegaw EM, Geraily G, Gholami S, Shojaei M, Tadesse GF. Gold-nanoparticle-enriched breast tissue in breast cancer treatment using the INTRABEAM® system: a Monte Carlo study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:119-131. [PMID: 34860272 DOI: 10.1007/s00411-021-00954-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Using a 50-kV INTRABEAM® system after breast-conserving surgery, breast skin injury and long treatment time remain the challenging problems when large-size spherical applicators are used. This study has aimed to address these problems using gold (Au) nanoparticles (NPs). For this, surface and isotropic doses were measured using a Gafchromic EBT3 film and a water phantom. The particle propagation code EGSnrc/Epp was used to score the corresponding doses using a geometry similar to that used in the measurements. The simulation was validated using a gamma index of 2%/2 mm acceptance criterion in the gamma analysis. After validation Au-NP-enriched breast tissue was simulated to quantify any breast skin dose reduction and shortening of treatment time. It turned out that the gamma value deduced for validation of the simulation was in an acceptable range (i.e., less than one). For 20 mg-Au/g-breast tissue, the calculated Dose Enhancement Ratio (DER) of the breast skin was 0.412 and 0.414 using applicators with diameters of 1.5 cm and 5 cm, respectively. The corresponding treatment times were shortened by 72.22% and 72.30% at 20 mg-Au/g-breast tissue concentration, respectively. It is concluded that Au-NP-enriched breast tissue shows significant advantages, such as reducing the radiation dose received by the breast skin as well as shortening the treatment time. Additionally, the DERs were not significantly dependent on the size of the applicators.
Collapse
Affiliation(s)
- Eyachew Misganew Tegaw
- Department of Physics, Faculty of Natural and Computational Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, School of Medicine, International Campus (TUMS-IC), Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Gholami
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shojaei
- Department of Medical Physics and Biomedical Engineering, School of Medicine, International Campus (TUMS-IC), Tehran University of Medical Sciences, Tehran, Iran
| | - Getu Ferenji Tadesse
- Department of Physics, College of Natural and Computational Sciences, Aksum University, Axum, Ethiopia
| |
Collapse
|
10
|
Jabeen M, Chow JCL. Gold Nanoparticle DNA Damage by Photon Beam in a Magnetic Field: A Monte Carlo Study. NANOMATERIALS 2021; 11:nano11071751. [PMID: 34361137 PMCID: PMC8308193 DOI: 10.3390/nano11071751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Ever since the emergence of magnetic resonance (MR)-guided radiotherapy, it is important to investigate the impact of the magnetic field on the dose enhancement in deoxyribonucleic acid (DNA), when gold nanoparticles are used as radiosensitizers during radiotherapy. Gold nanoparticle-enhanced radiotherapy is known to enhance the dose deposition in the DNA, resulting in a double-strand break. In this study, the effects of the magnetic field on the dose enhancement factor (DER) for varying gold nanoparticle sizes, photon beam energies and magnetic field strengths and orientations were investigated using Geant4-DNA Monte Carlo simulations. Using a Monte Carlo model including a single gold nanoparticle with a photon beam source and DNA molecule on the left and right, it is demonstrated that as the gold nanoparticle size increased, the DER increased. However, as the photon beam energy decreased, an increase in the DER was detected. When a magnetic field was added to the simulation model, the DER was found to increase by 2.5-5% as different field strengths (0-2 T) and orientations (x-, y- and z-axis) were used for a 100 nm gold nanoparticle using a 50 keV photon beam. The DNA damage reflected by the DER increased slightly with the presence of the magnetic field. However, variations in the magnetic field strength and orientation did not change the DER significantly.
Collapse
Affiliation(s)
- Mehwish Jabeen
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada
- Correspondence: ; Tel.: +1-416-946-4501
| |
Collapse
|
11
|
Tegaw EM, Geraily G, Etesami SM, Ghanbari H, Gholami S, Shojaei M, Farzin M, Tadesse GF. Dosimetric effect of nanoparticles in the breast cancer treatment using INTRABEAM ®system with spherical applicators in the presence of tissue heterogeneities: A Monte Carlo study. Biomed Phys Eng Express 2021; 7. [PMID: 33836513 DOI: 10.1088/2057-1976/abf6a9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Using the 50 kV INTRABEAM®IORT system after breast-conserving surgery: tumor recurrence and organs at risk (OARs), such as the lung and heart, long-term complications remain the challenging problems for breast cancer patients. So, the objective of this study was to address these two problems with the help of high atomic number nanoparticles (NPs). A Monte Carlo (MC) Simulation type EGSnrc C++ class library (egspp) with its Easy particle propagation (Epp) user code was used. The simulation was validated against the measured depth dose data found in our previous study (Tegaw,et al2020 Dosimetric characteristics of the INTRABEAM®system with spherical applicators in the presence of air gaps and tissue heterogeneities,Radiat. Environ. Biophys. (10.1007/s00411-020-00835-0)) using the gamma index and passed 2%/2 mm acceptance criteria in the gamma analysis. Gold (Au) NPs were selected after comparing Dose Enhancement Ratios (DERs) of bismuth (Bi), Au, and platinum (Pt) NPs which were calculated from the simulated results. As a result, 0.02, 0.2, 2, 10, and 20 mg-Au/g-breast tissue were used throughout this study. These particles were not distributed in discrete but in a uniform concentration. For 20 mg-Au/g-breast tissue, the DERs were 3.6, 0.420, and 0.323 for breast tissue, lung, heart, respectively, using the 1.5 cm-diameter applicator (AP) and 3.61, 0.428, and 0.335 forbreast tissue, lung, and heart using the 5 cm-diameter applicator, respectively. DER increased with the decrease in the depth of tissues and increase in the effective atomic number (Zeff) and concentration of Au NPs, however, there was no significant change as AP sizes increased. Therefore, Au NPs showed dual advantages such as dose enhancement within the tumor bed and reduction in the OARs (heart and lung).
Collapse
Affiliation(s)
- Eyachew Misganew Tegaw
- Department of Physics, Faculty of Natural and Computational Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Etesami
- School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Gholami
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shojaei
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Farzin
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Getu Ferenji Tadesse
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physics, College of Natural and Computational Sciences, Aksum University, Ethiopia
| |
Collapse
|
12
|
Moradi F, Rezaee Ebrahim Saraee K, Abdul Sani S, Bradley D. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Mohseni M, Kazemzadeh A, Ataei N, Moradi H, Aliasgharzadeh A, Farhood B. Study on the Dose Enhancement of Gold Nanoparticles When Exposed to Clinical Electron, Proton, and Alpha Particle Beams by Means of Geant4. JOURNAL OF MEDICAL SIGNALS & SENSORS 2021; 10:286-294. [PMID: 33575201 PMCID: PMC7866949 DOI: 10.4103/jmss.jmss_58_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/02/2022]
Abstract
Background: Various factors effecting deposited energy and dose enhancement ratio (DER) in the simplified model of cell caused by the interaction of a cluster of gold nanoparticles (GNPs) with electron beams were assessed, and the results were compared with other sources through Geant4 Monte Carlo simulation toolkit. Method: The effect of added GNPs on the DNA strand breaks level, irradiated to electron, proton, and alpha beams, is assessed. Results: Presence of GNPs in the cell makes DER value more pronounced for low-energy photons rather than electron beam. Moreover, the results of DER values did not show any significant increase in absorbed dose in the presence of GNP for proton and alpha beam. Moreover, the results of DNA break with GNPs for proton and alpha beam were negligible. It is demonstrated that as the sizes of the GNPs increase, the DER is enlarged until a certain size for 40 keV photons, while there is no striking change for 50 keV electron beam when the size of the GNPs changes. The results indicate that although energy deposited in the cell for electron beam is more than low-energy photon, DER values are low compared to photon. Conclusion: Larger GNPs do not show any preference over smaller ones when irradiated through electron beams. It is proved that GNPs do not significantly increase single-strand breaks (SSBs) and double-strand breaks during electron irradiation, while there exists a direct relationship between SSB and energy.
Collapse
Affiliation(s)
- Mehran Mohseni
- Department of Medical Physics, Kashan University of Medical Science, Kashan, Iran
| | - Arezoo Kazemzadeh
- Department of Medical Physics, Kashan University of Medical Science, Kashan, Iran
| | - Nafiseh Ataei
- Department of Medical Physics, Kashan University of Medical Science, Kashan, Iran
| | - Habiballah Moradi
- Department of Medical Physics, Kashan University of Medical Science, Kashan, Iran
| | - Akbar Aliasgharzadeh
- Department of Medical Physics, Kashan University of Medical Science, Kashan, Iran
| | - Bagher Farhood
- Department of Medical Physics, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
14
|
Yang S, Han G, Chen Q, Yu L, Wang P, Zhang Q, Dong J, Zhang W, Huang J. Au-Pt Nanoparticle Formulation as a Radiosensitizer for Radiotherapy with Dual Effects. Int J Nanomedicine 2021; 16:239-248. [PMID: 33469284 PMCID: PMC7811476 DOI: 10.2147/ijn.s287523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background Radiotherapy occupies an essential position as one of the most significant approaches for the clinical treatment of cancer. However, we cannot overcome the shortcoming of X-rays which is the high value of the oxygen enhancement ratio (OER). Radiosensitizers with the ability to enhance the radiosensitivity of tumor cells provide an alternative to changing X-rays to protons and heavy ion radiotherapy. Materials and Methods We prepared the Au-Pt nanoparticles (Au-Pt NPs) using a one-step method. The characteristics of the Au-Pt NPs were determined using TEM, HAADF-STEM, elemental mapping images, and DLS. The enhanced radiotherapy was demonstrated in vitro using MTT assays, colony formation assays, fluorescence imaging, and flow cytometric analyses of the apoptosis. The biodistribution of the Au-Pt NPs was analyzed using ICP-OES, and thermal images. The enhanced radiotherapy was demonstrated in vitro using immunofluorescence images, tumor volume and weigh, and hematoxylin & eosin (H&E) staining. Results Polyethylene glycol (PEG) functionalized nanoparticles composed of the metallic elements Au and Pt were designed to increase synergistic radiosensitivity. The mechanism demonstrated that heavy metal NPs possess a high X-ray photon capture cross-section and Compton scattering effect which increased DNA damage. Furthermore, the Au-Pt NPs exhibited enzyme-mimicking activities by catalyzing the decomposition of endogenous H2O2 to O2 in the solid tumor microenvironment (TME). Conclusion Our work provides a systematically administered radiosensitizer that can selectively reside in a tumor via the EPR effect and enhances the efficiency of treating cancer with radiotherapy.
Collapse
Affiliation(s)
- Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Quan Chen
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Lei Yu
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qi Zhang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jiang Dong
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Wei Zhang
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Sheeraz Z, Chow JC. Evaluation of dose enhancement with gold nanoparticles in kilovoltage radiotherapy using the new EGS geometry library in Monte Carlo simulation. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
<abstract><sec>
<title>Purpose</title>
<p>This study compared the dose enhancement predicted in kilovoltage gold nanoparticle-enhanced radiotherapy using the newly developed EGS lattice and the typical gold-water mixture method in Monte Carlo simulation. This new method considered the gold nanoparticle-added volume consisting of solid nanoparticles instead of a gold-water mixture. In addition, this particle method is more realistic in simulation.</p>
</sec><sec>
<title>Methods</title>
<p>A heterogeneous phantom containing bone and water was irradiated by the 105 and 220 kVp x-ray beams. Gold nanoparticles were added to the tumour volume with concentration varying from 3–40 mg/mL in the phantom. The dose enhancement ratio (DER), defined as the ratio of dose at the tumour with and without adding gold nanoparticles, was calculated by the gold-water mixture and particle method using Monte Carlo simulation for comparison.</p>
</sec><sec>
<title>Results</title>
<p>It is found that the DER was 1.44–4.71 (105 kVp) and 1.27–2.43 (220 kVp) for the gold nanoparticle concentration range of 3–40 mg/mL, when they were calculated by the gold-water mixture method. The DER was slightly larger and equal to 1.47–4.84 (105 kVp) and 1.29–2.5 (220 kVp) for the same concentration range, when the particle method was used. Moreover, the DER predicted by both methods increased with an increase of nanoparticle concentration, and a decrease of x-ray beam energy.</p>
</sec><sec>
<title>Conclusion</title>
<p>The deviation of DER determined by the particle and gold-water mixture method was insignificant when considering the uncertainty in the calculation of DER (2%) in the nanoparticle concentration range of 3–40 mg/mL. It is therefore concluded that the gold-water mixture method could predict the dose enhancement as accurate as the newly developed particle method.</p>
</sec></abstract>
Collapse
|
16
|
Oladipo AO, Nkambule TTI, Mamba BB, Msagati TAM. Therapeutic nanodendrites: current applications and prospects. NANOSCALE ADVANCES 2020; 2:5152-5165. [PMID: 36132031 PMCID: PMC9417514 DOI: 10.1039/d0na00672f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/03/2020] [Indexed: 05/04/2023]
Abstract
Multidisciplinary efforts in the field of nanomedicine for cancer therapy to provide solutions to common limitations of traditional drug administration such as poor bioaccumulation, hydrophobicity, and nonspecific biodistribution and targeting have registered very promising progress thus far. Currently, a new class of metal nanostructures possessing a unique dendritic-shaped morphology has been designed for improved therapeutic efficiency. Branched metal nanoparticles or metal nanodendrites are credited to present promising characteristics for biomedical applications owing to their unique physicochemical, optical, and electronic properties. Nanodendrites can enhance the loading efficiency of bioactive molecules due to their three-dimensional (3D) high surface area and can selectively deliver their cargo to tumor cells using their stimuli-responsive properties. With the ability to accumulate sufficiently within cells, nanodendrites can overcome the detection and clearance by glycoproteins. Moreover, active targeting ligands such as antibodies and proteins can as well be attached to these therapeutic nanodendrites to enhance specific tumor targeting, thereby presenting a multifunctional nanoplatform with tunable strategies. This mini-review focuses on recent developments in the understanding of metallic nanodendrite synthesis, formation mechanism, and their therapeutic capabilities for next-generation cancer therapy. Finally, the challenges and future opportunities of these fascinating materials to facilitate extensive research endeavors towards the design and application were discussed.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| |
Collapse
|
17
|
Depth Dose Enhancement on Flattening-Filter-Free Photon Beam: A Monte Carlo Study in Nanoparticle-Enhanced Radiotherapy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study is to investigate the variations of depth dose enhancement (DDE) on different nanoparticle (NP) variables, when using the flattening-filter-free (FFF) photon beam in nanoparticle-enhanced radiotherapy. Monte Carlo simulation under a macroscopic approach was used to determine the DDE ratio (DDER) with variables of NP material (gold (Au) and iron (III) oxide (Fe2O3)), NP concentration (3–40 mg/mL) and photon beam (10 MV flattening-filter (FF) and 10 MV FFF). It is found that Au NPs had a higher DDER than Fe2O3 NPs, when the depths were shallower than 6 and 8 cm for the 10 MV FF and 10 MV FFF photon beams, respectively. However, in a deeper depth range of 10–20 cm, DDER for the Au NPs was lower than Fe2O3 NPs mainly due to the beam attenuation and photon energy distribution. It is concluded that DDER for the Au NPs and Fe2O3 NPs decreased with an increase of depth in the range of 10–20 cm, with rate of decrease depending on the NP material, NP concentration and the use of FF in the photon beam.
Collapse
|
18
|
Abstract
Nanomaterials are popularly used in drug delivery, disease diagnosis and therapy. Among a number of functionalized nanomaterials such as carbon nanotubes, peptide nanostructures, liposomes and polymers, gold nanoparticles (Au NPs) make excellent drug and anticancer agent carriers in biomedical and cancer therapy application. Recent advances of synthetic technique improved the surface coating of Au NPs with accurate control of particle size, shape and surface chemistry. These make the gold nanomaterials a much easier and safer cancer agent and drug to be applied to the patient’s tumor. Although many studies on Au NPs have been published, more results are in the pipeline due to the rapid development of nanotechnology. The purpose of this review is to assess how the novel nanomaterials fabricated by Au NPs can impact biomedical applications such as drug delivery and cancer therapy. Moreover, this review explores the viability, property and cytotoxicity of various Au NPs.
Collapse
|
19
|
Dose Enhancement for the Flattening-Filter-Free and Flattening-Filter Photon Beams in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study. NANOMATERIALS 2020; 10:nano10040637. [PMID: 32235369 PMCID: PMC7221749 DOI: 10.3390/nano10040637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Monte Carlo simulations were used to predict the dose enhancement ratio (DER) using the flattening-filter-free (FFF) and flattening-filter (FF) photon beams in prostate nanoparticle-enhanced radiotherapy, with multiple variables such as nanoparticle material, nanoparticle concentration, prostate size, pelvic size, and photon beam energy. A phantom mimicking the patient’s pelvis with various prostate and pelvic sizes was used. Macroscopic Monte Carlo simulation using the EGSnrc code was used to predict the dose at the prostate or target using the 6 MV FFF, 6 MV FF, 10 MV FFF, and 10 MV FF photon beams produced by a Varian TrueBeam linear accelerator (Varian Medical System, Palo Alto, CA, USA). Nanoparticle materials of gold, platinum, iodine, silver, and iron oxide with concentration varying in the range of 3–40 mg/ml were used in simulations. Moreover, the prostate and pelvic size were varied from 2.5 to 5.5 cm and 20 to 30 cm, respectively. The DER was defined as the ratio of the target dose with nanoparticle addition to the target dose without nanoparticle addition in the simulation. From the Monte Carlo results of DER, the best nanoparticle material with the highest DER was gold, based on all the nanoparticle concentrations and photon beams. Smaller prostate size, smaller pelvic size, and a higher nanoparticle concentration showed better DER results. When comparing energies, the 6 MV beams always had the greater enhancement ratio. In addition, the FFF photon beams always had a better DER when compared to the FF beams. It is concluded that gold nanoparticles were the most effective material in nanoparticle-enhanced radiotherapy. Moreover, lower photon beam energy (6 MV), FFF photon beam, higher nanoparticle concentration, smaller pelvic size, and smaller prostate size would all increase the DER in prostate nanoparticle-enhanced radiotherapy.
Collapse
|
20
|
Abdulle A, Chow JCL. Contrast Enhancement for Portal Imaging in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Evaluation Using Flattening-Filter-Free Photon Beams. NANOMATERIALS 2019; 9:nano9070920. [PMID: 31248046 PMCID: PMC6669570 DOI: 10.3390/nano9070920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022]
Abstract
Our team evaluated contrast enhancement for portal imaging using Monte Carlo simulation in nanoparticle-enhanced radiotherapy. Dependencies of percentage contrast enhancement on flattening-filter (FF) and flattening-filter-free (FFF) photon beams were determined by varying the nanoparticle material (gold, platinum, iodine, silver, iron oxide), nanoparticle concentration (3–40 mg/mL) and photon beam energy (6 and 10 MV). Phase-space files and energy spectra of the 6 MV FF, 6 MV FFF, 10 MV FF and 10 MV FFF photon beams were generated based on a Varian TrueBeam linear accelerator. We found that gold and platinum nanoparticles (NP) produced the highest contrast enhancement for portal imaging, compared to other NP with lower atomic numbers. The maximum percentage contrast enhancements for the gold and platinum NP were 18.9% and 18.5% with a concentration equal to 40 mg/mL. The contrast enhancement was also found to increase with the nanoparticle concentration. The maximum rate of increase of contrast enhancement for the gold NP was equal to 0.29%/mg/mL. Using the 6 MV photon beams, the maximum contrast enhancements for the gold NP were 79% (FF) and 78% (FFF) higher than those using the 10 MV beams. For the FFF beams, the maximum contrast enhancements for the gold NP were 53.6% (6 MV) and 53.8% (10 MV) higher than those using the FF beams. It is concluded that contrast enhancement for portal imaging can be increased when a higher atomic number of NP, higher nanoparticle concentration, lower photon beam energy and no flattening filter of photon beam are used in nanoparticle-enhanced radiotherapy.
Collapse
Affiliation(s)
- Aniza Abdulle
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5T 1P5, Canada.
| |
Collapse
|
21
|
K.A. MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman W. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Laprise-Pelletier M, Simão T, Fortin MA. Gold Nanoparticles in Radiotherapy and Recent Progress in Nanobrachytherapy. Adv Healthc Mater 2018; 7:e1701460. [PMID: 29726118 DOI: 10.1002/adhm.201701460] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Indexed: 12/29/2022]
Abstract
Over the last few decades, gold nanoparticles (GNPs) have emerged as "radiosensitizers" in oncology. Radiosensitizers are additives that can enhance the effects of radiation on biological tissues treated with radiotherapy. The interaction of photons with GNPs leads to the emission of low-energy and short-range secondary electrons, which in turn increase the dose deposited in tissues. In this context, GNPs are the subject of intensive theoretical and experimental studies aiming at optimizing the parameters leading to greater dose enhancement and highest therapeutic effect. This review describes the main mechanisms occurring between photons and GNPs that lead to dose enhancement. The outcome of theoretical simulations of the interactions between GNPs and photons is presented. Finally, the findings of the most recent in vivo studies about interactions between GNPs and photon sources (e.g., external beams, brachytherapy sources, and molecules labeled with radioisotopes) are described. The advantages and challenges inherent to each of these approaches are discussed. Future directions, providing new guidelines for the successful translation of GNPs into clinical applications, are also highlighted.
Collapse
Affiliation(s)
- Myriam Laprise-Pelletier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec); Axe Médecine Régénératrice; Québec G1L 3L5 QC Canada
- Department of Mining; Metallurgy and Materials Engineering; Université Laval; Québec G1V 0A6 QC Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec G1V 0A6 QC Canada
| | - Teresa Simão
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec); Axe Médecine Régénératrice; Québec G1L 3L5 QC Canada
- Department of Mining; Metallurgy and Materials Engineering; Université Laval; Québec G1V 0A6 QC Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec G1V 0A6 QC Canada
| | - Marc-André Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec); Axe Médecine Régénératrice; Québec G1L 3L5 QC Canada
- Department of Mining; Metallurgy and Materials Engineering; Université Laval; Québec G1V 0A6 QC Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec G1V 0A6 QC Canada
| |
Collapse
|
23
|
Albayedh F, Chow JCL. Monte Carlo Simulation on the Imaging Contrast Enhancement in Nanoparticle-enhanced Radiotherapy. J Med Phys 2018; 43:195-199. [PMID: 30305778 PMCID: PMC6172862 DOI: 10.4103/jmp.jmp_141_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study focused on the imaging in radiotherapy by finding the relationship between the imaging contrast ratio and appropriate gold, iodine, iron oxide, silver, and platinum nanoparticle concentrations; the relationship between the imaging contrast ratio and different beam energies for the different nanoparticle concentrations; the relationship between the contrast ratio and various beam energies for gold nanoparticles; and the relationship between the contrast ratio and different thicknesses of the incident layer of the phantom including variety of gold nanoparticles (GNPs) concentration. Monte Carlo simulation was used to model the gold, iodine, iron oxide, silver, and platinum nanoparticle concentration which were infused within a heterogeneous phantom (50 cm × 50 cm × 10.5 cm) choosing different concentrations (3, 7, 18, 30, and 40 mg), and beams (100, 120, 130, and 140 kVp) correspondingly that were delivered into the phantom. The results showed obvious connection between the high concentration and having a high imaging contrast ratio, low energy and a high contrast ratio, small thickness, and a high contrast ratio. The superior nanoparticle obtained was GNP, the better concentration was 40 mg, the better beam energy was 100 kVp, and the better thickness was 0.5 cm. It is concluded that our study successfully proved that medical imaging contrast could be improved by increasing the contrast ratio using GNP as the finest choice to accomplish this improvement considering a high concentration, low beam energy, and a small thickness.
Collapse
Affiliation(s)
- Ferdos Albayedh
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - James C L Chow
- Princess Margaret Cancer Centre, UHN, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|