1
|
Chen Y, Zhang N, Gao Y, Zhou Z, Gao X, Liu J, Gao Z, Zhang H, Wen Z, Xu L. A coronary CT angiography-derived myocardial radiomics model for predicting adverse outcomes in chronic myocardial infarction. Int J Cardiol 2024; 411:132265. [PMID: 38880416 DOI: 10.1016/j.ijcard.2024.132265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The prognostic efficacy of a coronary computed tomography angiography (CCTA)-derived myocardial radiomics model in patients with chronic myocardial infarction (MI) is unclear. METHODS In this retrospective study, a cohort of 236 patients with chronic MI who underwent both CCTA and cardiac magnetic resonance (CMR) examinations within 30 days were enrolled and randomly divided into training and testing datasets at a ratio of 7:3. The clinical endpoints were major adverse cardiovascular events (MACE), defined as all-cause death, myocardial reinfarction and heart failure hospitalization. The entire three-dimensional left ventricular myocardium on CCTA images was segmented as the volume of interest for the extraction of radiomics features. Five models, namely the clinical model, CMR model, clinical+CMR model, CCTA-radiomics model, and clinical+CCTA-radiomics model, were constructed using multivariate Cox regression. The prognostic performances of these models were evaluated through receiver operating characteristic curve analysis and the index of concordance (C-index). RESULTS Fifty-one (20.16%) patients experienced MACE during a median follow-up of 1439.5 days. The predictive performance of the CCTA-radiomics model surpassed that of the clinical model, CMR model, and clinical+CMR model in both the training (area under the curve (AUC) of 0.904 vs. 0.691, 0.764, 0.785; C-index of 0.88 vs. 0.71, 0.75, 0.76, all p values <0.001) and testing (AUC of 0.893 vs. 0.704, 0.851, 0.888; C-index of 0.86 vs. 0.73, 0.85, 0.85, all p values <0.05) datasets. CONCLUSIONS The CCTA-based myocardial radiomics model is a valuable tool for predicting adverse outcomes in chronic MI, providing incremental value to conventional clinical and CMR parameters.
Collapse
Affiliation(s)
- Yan Chen
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yifeng Gao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xuelian Gao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jiayi Liu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Zhifan Gao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Heye Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Zhaoying Wen
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
2
|
Umer M, Peters M, Dholiya H, Sagheer U, Bhandari S, Ghafghazi S, Slaughter MS, Kalra DK. Multiple recurrences of a left ventricular pseudoaneurysm: a case report. Eur Heart J Case Rep 2024; 8:ytae382. [PMID: 39421724 PMCID: PMC11483618 DOI: 10.1093/ehjcr/ytae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 10/19/2024]
Abstract
Background Takotsubo syndrome (TTS) is being diagnosed more often with its increased recognition over the past 2 decades and with the availability of imaging such as point-of-care echocardiography and tissue characterization by cardiovascular magnetic resonance (CMR). Case summary A young man developed pericarditis and was treated with steroids. A few weeks later, he suffered classic TTS and then presented a week later with the rare complication of apical myocardial rupture and a left ventricular (LV) pseudoaneurysm. He subsequently sustained two recurrences, likely secondary to the poor tensile strength of the repair in the region of necrotic myocardium. Discussion Various features of both syndromes are discussed herein (myopericarditis and TTS) as well as their classic imaging findings with an emphasis on the echocardiographic diagnosis of an LV pseudoaneurysm and differentiating it from an aneurysm. Furthermore, we elucidate the classic imaging findings of CMR in myocarditis, myocardial infarction with non-obstructive coronary arteries, and TTS. Lastly, we discuss treatment options for LV pseudoaneurysms and strategies to prevent recurrence.
Collapse
Affiliation(s)
- Muhammad Umer
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| | - Matthew Peters
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| | - Hardeep Dholiya
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| | - Usman Sagheer
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| | - Sagar Bhandari
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| | - Shahab Ghafghazi
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| | - Mark S Slaughter
- Department of Cardiothoracic Surgery, University of Louisville, Louisville, KY, USA
| | - Dinesh K Kalra
- Division of Cardiology, University of Louisville Heart Hospital, 201 Abraham Flexner Way, Suite 600, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Vande Berg B, De Keyzer F, Cernicanu A, Claus P, Masci PG, Bogaert J, Dresselaers T. Radiomics-based detection of acute myocardial infarction on noncontrast enhanced midventricular short-axis cine CMR images. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1211-1220. [PMID: 38630210 DOI: 10.1007/s10554-024-03089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/19/2024] [Indexed: 06/29/2024]
Abstract
Cardiac magnetic resonance cine images are primarily used to evaluate functional consequences, whereas limited information is extracted from the noncontrast pixel-wise myocardial signal intensity pattern. In this study we want to assess whether characterizing this inherent contrast pattern of noncontrast-enhanced short axis (SAX) cine images via radiomics is sufficient to distinguish subjects with acute myocardial infarction (AMI) from controls. Cine balanced steady-state free-precession images acquired at 1.5 T from 99 AMI and 49 control patients were included. First, radiomic feature extraction of the left ventricular myocardium of end-diastolic (ED) and end-systolic (ES) frames was performed based on automated (AUTO) or manually corrected (MAN) segmentations. Next, top features were selected based on optimal classification results using a support vector machine (SVM) approach. The classification performances of the four radiomics models (using AUTO or MAN segmented ED or ES images), were measured by AUC, classification accuracy (CA), F1-score, sensitivity and specificity. The most accurate model was found when combining the features RunLengthNonUniformity, ClusterShade and Median obtained from the manually segmented ES images (CA = 0.846, F1 score = 0.847). ED analysis performed worse than ES, with lower CA and F1 scores (0.769 and 0.770, respectively). Manual correction of automated contours resulted in similar model features as the automated segmentations and did not improve classification results. A radiomics analysis can capture the inherent contrast in noncontrast mid-ventricular SAX cine images to distinguishing AMI from healthy subjects. The ES radiomics model was more accurate than the ED model. Manual correction of the autosegmentation did not provide significant classification improvements.
Collapse
Affiliation(s)
- Baptiste Vande Berg
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederik De Keyzer
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Imaging and Pathology KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pier Giorgio Masci
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Imaging and Pathology KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas Hospital, London, UK
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Imaging and Pathology KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Tom Dresselaers
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Imaging and Pathology KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Almeida AG, Grapsa J, Gimelli A, Bucciarelli-Ducci C, Gerber B, Ajmone-Marsan N, Bernard A, Donal E, Dweck MR, Haugaa KH, Hristova K, Maceira A, Mandoli GE, Mulvagh S, Morrone D, Plonska-Gosciniak E, Sade LE, Shivalkar B, Schulz-Menger J, Shaw L, Sitges M, von Kemp B, Pinto FJ, Edvardsen T, Petersen SE, Cosyns B. Cardiovascular multimodality imaging in women: a scientific statement of the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging 2024; 25:e116-e136. [PMID: 38198766 DOI: 10.1093/ehjci/jeae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Cardiovascular diseases (CVD) represent an important cause of mortality and morbidity in women. It is now recognized that there are sex differences regarding the prevalence and the clinical significance of the traditional cardiovascular (CV) risk factors as well as the pathology underlying a range of CVDs. Unfortunately, women have been under-represented in most CVD imaging studies and trials regarding diagnosis, prognosis, and therapeutics. There is therefore a clear need for further investigation of how CVD affects women along their life span. Multimodality CV imaging plays a key role in the diagnosis of CVD in women as well as in prognosis, decision-making, and monitoring of therapeutics and interventions. However, multimodality imaging in women requires specific consideration given the differences in CVD between the sexes. These differences relate to physiological changes that only women experience (e.g. pregnancy and menopause) as well as variation in the underlying pathophysiology of CVD and also differences in the prevalence of certain conditions such as connective tissue disorders, Takotsubo, and spontaneous coronary artery dissection, which are all more common in women. This scientific statement on CV multimodality in women, an initiative of the European Association of Cardiovascular Imaging of the European Society of Cardiology, reviews the role of multimodality CV imaging in the diagnosis, management, and risk stratification of CVD, as well as highlights important gaps in our knowledge that require further investigation.
Collapse
Affiliation(s)
- Ana G Almeida
- Heart and Vessels Department, University Hospital Santa Maria, CAML, CCUL, Faculty of Medicine of Lisbon University, Lisbon, Portugal
| | - Julia Grapsa
- Cardiology Department, Guys and St Thomas NHS Trust, London, UK
| | - Alessia Gimelli
- Imaging Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chiara Bucciarelli-Ducci
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guys' and St Thomas NHS Hospitals, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Bernhard Gerber
- Service de Cardiologie, Département Cardiovasculaire, Cliniques Universitaires St. Luc, UCLouvain, Brussels, Belgium
- Division CARD, Institut de Recherche Expérimental et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Nina Ajmone-Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Bernard
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, Tours, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Erwan Donal
- CHU Rennes, Inserm, LTSI-UMR 1099, University of Rennes, Rennes, France
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, Edinburgh, UK
| | - Kristina H Haugaa
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- ProCardio Center for Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Krassimira Hristova
- Center for Cardiovascular Diseases, Faculty of Medicine, Sofia University, Sofia, Bulgaria
| | - Alicia Maceira
- Ascires Biomedical Group, Valencia, Spain
- Department of Medicine, Health Sciences School, UCH-CEU University, Valencia, Spain
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Sharon Mulvagh
- Division of Cardiology, Dalhousie University, Halifax, NS, Canada
| | - Doralisa Morrone
- Division of Cardiology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Leyla Elif Sade
- Cardiology Department, University of Baskent, Ankara, Turkey
- UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jeanette Schulz-Menger
- Charité ECRC Medical Faculty of the Humboldt University Berlin and Helios-Clinics, Berlin, Germany
- DZHK, Partner site Berlin, Berlin, Germany
| | - Leslee Shaw
- Department of Medicine (Cardiology), Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERCV, Barcelona, Spain
| | - Berlinde von Kemp
- Cardiology, Centrum voor Hart en Vaatziekten (CHVZ), Universitair Ziejkenhuis Brussel (UZB), Vrij Universiteit Brussel (VUB), Brussels, Belgium
| | - Fausto J Pinto
- Heart and Vessels Department, University Hospital Santa Maria, CAML, CCUL, Faculty of Medicine of Lisbon University, Lisbon, Portugal
| | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- ProCardio Center for Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Bernard Cosyns
- Cardiology, Centrum voor Hart en Vaatziekten (CHVZ), Universitair Ziejkenhuis Brussel (UZB), Vrij Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
5
|
Maries L, Moatar AI, Chis AR, Marian C, Luca CT, Sirbu IO, Gaiță D. Plasma hsa-miR-22-3p Might Serve as an Early Predictor of Ventricular Function Recovery after ST-Elevation Acute Myocardial Infarction. Biomedicines 2023; 11:2289. [PMID: 37626785 PMCID: PMC10452683 DOI: 10.3390/biomedicines11082289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Left ventricle remodeling (LVR) after acute myocardial infarction (aMI) leads to impairment of both systolic and diastolic function, a major contributor to heart failure (HF). Despite extensive research, predicting post-aMI LVR and HF is still a challenge. Several circulant microRNAs have been proposed as LVR predictors; however, their clinical value is controversial. Here, we used real-time quantitative polymerase chain reaction (qRT-PCR) to quantify hsa-miR-22-3p (miR-22) plasma levels on the first day of hospital admission of ST-elevation aMI (STEMI) patients. We analyzed miR-22 correlation to the patients' clinical and paraclinical variables and evaluated its ability to discriminate between post-aMI LVR and non-LVR. We show that miR-22 is an excellent aMI discriminator and can distinguish between LVR and non-LVR patients. The discriminative performance of miR-22 significantly improves the predictive power of a multiple logistic regression model based on four continuous variables (baseline ejection fraction and end-diastolic volume, CK-MB, and troponin). Furthermore, we found that diabetes mellitus, hematocrit level, and the number of erythrocytes significantly influence its levels. These data suggest that miR-22 might be used as a predictor of ventricular function recovery in STEMI patients.
Collapse
Affiliation(s)
- Liana Maries
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandra Ioana Moatar
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Aimee Rodica Chis
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Marian
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Constantin Tudor Luca
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.T.L.); (D.G.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Biochemistry Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.M.); (A.I.M.); (A.R.C.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.T.L.); (D.G.)
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
6
|
Wu B, Cao Y, Meng M, Jiang Y, Tao H, Zhang Y, Huang C, Li R. Gabapentin alleviates myocardial ischemia-reperfusion injury by increasing the protein expression of GABA ARδ. Eur J Pharmacol 2023; 944:175585. [PMID: 36791842 DOI: 10.1016/j.ejphar.2023.175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Gabapentin is a commonly used analgesic in the clinic to reduce opioid consumption. It is well known that gabapentin can reduce cerebral ischemia-reperfusion injury (IRI). However, it remains unclear whether gabapentin can reduce myocardial IRI. Before the performance of myocardial ischemia and reperfusion (I/R), rats received gabapentin without or with an intravenous injection of PI3K inhibitor (LY294002), or an intraspinal injection of lentivirus-mediated GABAARδ-shRNA. The myocardial IRI were evaluated by calculating the infarction area, arrhythmia score and myocardial apoptosis. The activity of PI3K/Akt and the expression of GABAARδ were quantified by western blotting. The effect of gabapentin on myocardial I/R was further demonstrated in vitro by establishing oxygen-glucose deprivation and reoxygenation in cardiomyocytes. After I/R in vivo, there were significant increases in infarction area, arrhythmia and Bax protein expression in the myocardium, as well as a decrease of GABAARδ in the spinal cord. Meanwhile, I/R also decreased the protein expression of PI3K/Akt and Bcl-2. Gabapentin pretreatment successfully attenuated IRI including reducing the myocardial infarction area and apoptosis. This effect was abolished by both the systemic inhibition of PI3K/Akt and the intraspinal suppression of GABAARδ. However, gabapentin pretreatment failed to prevent cellular injury induced by OGD/R in cardiomyocytes. Therefore, the myocardial protective effect of gabapentin may be attributed to activating PI3K/Akt in the myocardium and upregulating GABAARδ in the spinal cord. Gabapentin achieved a potent protective effect on the myocardium during the course of routine clinical treatment.
Collapse
Affiliation(s)
- Bin Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yahong Cao
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - MingZhu Meng
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yanwan Jiang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
7
|
Radesich C, Cappelletto C, Indennidate C, Perotto M, Di Lenarda A. Predicting left ventricular functional recovery in ischaemic cardiomyopathy: needs and challenges. Eur Heart J Suppl 2023; 25:B69-B74. [PMID: 37091642 PMCID: PMC10120944 DOI: 10.1093/eurheartjsupp/suad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Left ventricular (LV) systolic function is an essential parameter for the evaluation of patients with ischaemic heart disease, and therapeutic choices are significantly driven by LV ejection fraction (LVEF) in the early stage of the disease and during follow-up. After an acute coronary syndrome, ventricular dysfunction may be reversible when caused by transient myocardial stunning. Therefore, the identification of clinical, laboratory, and instrumental predictors of improvement in LV systolic function (in addition to LVEF) is essential for an adequate prognostic stratification. In the setting of chronic ischaemic heart disease, there is no evidence that an improvement in LV systolic function is invariably associated with a better prognosis and LVEF is only one of many parameters that should be considered for the risk stratification. This state-of-the-art review will critically analyse the scientific evidence regarding known predictors of LVEF recovery, trying to elucidate their pathophysiological principles and clinical value.
Collapse
Affiliation(s)
- Cinzia Radesich
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste
| | - Chiara Cappelletto
- Territorial Specialist Department, SC Cardiovascular Pathologies, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste
| | - Carla Indennidate
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste
| | - Maria Perotto
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste
| | - Andrea Di Lenarda
- Territorial Specialist Department, SC Cardiovascular Pathologies, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste
| |
Collapse
|
8
|
Blanco-Blázquez V, Báez-Díaz C, Sánchez-Margallo FM, González-Bueno I, Martín H, Blázquez R, Casado JG, Usón A, Solares J, Palacios I, Steendam R, Crisóstomo V. Intracoronary Administration of Microencapsulated HGF in a Reperfused Myocardial Infarction Swine Model. J Cardiovasc Dev Dis 2023; 10:86. [PMID: 36826582 PMCID: PMC9960949 DOI: 10.3390/jcdd10020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Therapy microencapsulation allows minimally invasive, safe, and effective administration. Hepatocyte growth factor (HGF) has angiogenic, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. Our objective was to evaluate the cardiac safety and effectiveness of intracoronary (IC) administration of HGF-loaded extended release microspheres in an acute myocardial infarction (AMI) swine model. An IC infusion of 5 × 106 HGF-loaded microspheres (MS+HGF, n = 7), 5 × 106 placebo microspheres (MS, n = 7), or saline (SAL, n = 7) was performed two days after AMI. TIMI flow and Troponin I (TnI) values were assessed pre- and post-treatment. Cardiac function was evaluated with magnetic resonance imaging (cMR) before injection and at 10 weeks. Plasma cytokines were determined to evaluate the inflammatory profile and hearts were subjected to histopathological evaluation. Post-treatment coronary flow was impaired in five animals (MS+HGF and MS group) without significant increases in TnI. One animal (MS group) died during treatment. There were no significant differences between groups in cMR parameters at any time (p > 0.05). No statistically significant changes were found between groups neither in cytokines nor in histological analyses. The IC administration of 5 × 106 HGF-loaded-microspheres 48 h post-AMI did not improve cardiac function, nor did it decrease inflammation or cardiac fibrosis in this experimental setting.
Collapse
Affiliation(s)
- Virginia Blanco-Blázquez
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
| | - Claudia Báez-Díaz
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Irene González-Bueno
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Helena Martín
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Rebeca Blázquez
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Javier G. Casado
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain
| | - Alejandra Usón
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | | | | | - Rob Steendam
- Innocore Pharmaceuticals, 9713 GX Groningen, The Netherlands
| | - Verónica Crisóstomo
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
| |
Collapse
|
9
|
Báez-Díaz C, Blanco-Blázquez V, Sánchez-Margallo FM, López E, Martín H, Espona-Noguera A, Casado JG, Ciriza J, Pedraz JL, Crisóstomo V. Intrapericardial Delivery of APA-Microcapsules as Promising Stem Cell Therapy Carriers in an Experimental Acute Myocardial Infarction Model. Pharmaceutics 2021; 13:1824. [PMID: 34834235 PMCID: PMC8626005 DOI: 10.3390/pharmaceutics13111824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
The administration of cardiosphere-derived cells (CDCs) after acute myocardial infarction (AMI) is very promising. CDC encapsulation in alginate-poly-l-lysine-alginate (APA) could increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high concentrations of the therapeutic agent in the infarcted area. We aimed to evaluate IP therapy using a saline vehicle as a control (CON), a dose of 30 × 106 CDCs (CDCs) or APA microcapsules containing 30 × 106 CDCs (APA-CDCs) at 72 h in a porcine AMI model. Magnetic resonance imaging (MRI) was used to determine the left ventricular ejection fraction (LVEF), infarct size (IS), and indexed end diastolic and systolic volumes (EDVi; ESVi) pre- and 10 weeks post-injection. Programmed electrical stimulation (PES) was performed to test arrhythmia inducibility before euthanasia. Histopathological analysis was carried out afterwards. The IP infusion was successful in all animals. At 10 weeks, MRI revealed significantly higher LVEF in the APA-CDC group compared with CON. No significant differences were observed among groups in IS, EDVi, ESVi, PES and histopathological analyses. In conclusion, the IP injection of CDCs (microencapsulated or not) was feasible and safe 72 h post-AMI in the porcine model. Moreover, CDCs APA encapsulation could have a beneficial effect on cardiac function, reflected by a higher LVEF at 10 weeks.
Collapse
Affiliation(s)
- Claudia Báez-Díaz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Virginia Blanco-Blázquez
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Francisco Miguel Sánchez-Margallo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Esther López
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Helena Martín
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Albert Espona-Noguera
- Centro de Investigaciones y Estudios Avanzados Lucio Lascaray (CIEA), Laboratorio de Desarrollo y Evaluación de Medicamentos, 01006 Vitoria Gasteiz, Spain; (A.E.-N.); (J.L.P.)
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Javier G. Casado
- Immunology Unit-Institute of Molecular Pathology Biomarkers, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain;
| | - Jesús Ciriza
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| | - José Luis Pedraz
- Centro de Investigaciones y Estudios Avanzados Lucio Lascaray (CIEA), Laboratorio de Desarrollo y Evaluación de Medicamentos, 01006 Vitoria Gasteiz, Spain; (A.E.-N.); (J.L.P.)
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Verónica Crisóstomo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| |
Collapse
|
10
|
Ordovas KG, Baldassarre LA, Bucciarelli-Ducci C, Carr J, Fernandes JL, Ferreira VM, Frank L, Mavrogeni S, Ntusi N, Ostenfeld E, Parwani P, Pepe A, Raman SV, Sakuma H, Schulz-Menger J, Sierra-Galan LM, Valente AM, Srichai MB. Cardiovascular magnetic resonance in women with cardiovascular disease: position statement from the Society for Cardiovascular Magnetic Resonance (SCMR). J Cardiovasc Magn Reson 2021; 23:52. [PMID: 33966639 PMCID: PMC8108343 DOI: 10.1186/s12968-021-00746-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
This document is a position statement from the Society for Cardiovascular Magnetic Resonance (SCMR) on recommendations for clinical utilization of cardiovascular magnetic resonance (CMR) in women with cardiovascular disease. The document was prepared by the SCMR Consensus Group on CMR Imaging for Female Patients with Cardiovascular Disease and endorsed by the SCMR Publications Committee and SCMR Executive Committee. The goals of this document are to (1) guide the informed selection of cardiovascular imaging methods, (2) inform clinical decision-making, (3) educate stakeholders on the advantages of CMR in specific clinical scenarios, and (4) empower patients with clinical evidence to participate in their clinical care. The statements of clinical utility presented in the current document pertain to the following clinical scenarios: acute coronary syndrome, stable ischemic heart disease, peripartum cardiomyopathy, cancer therapy-related cardiac dysfunction, aortic syndrome and congenital heart disease in pregnancy, bicuspid aortic valve and aortopathies, systemic rheumatic diseases and collagen vascular disorders, and cardiomyopathy-causing mutations. The authors cite published evidence when available and provide expert consensus otherwise. Most of the evidence available pertains to translational studies involving subjects of both sexes. However, the authors have prioritized review of data obtained from female patients, and direct comparison of CMR between women and men. This position statement does not consider CMR accessibility or availability of local expertise, but instead highlights the optimal utilization of CMR in women with known or suspected cardiovascular disease. Finally, the ultimate goal of this position statement is to improve the health of female patients with cardiovascular disease by providing specific recommendations on the use of CMR.
Collapse
Affiliation(s)
| | | | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol, UK
- Bristol National Institute of Health Research (NIHR) Biomedical , Research Centre, Bristol, UK
- University Hospitals Bristol, Bristol, UK
- University of Bristol, Bristol, UK
| | - James Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Vanessa M Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Luba Frank
- Medical College of Wisconsin, Wisconsin, USA
| | - Sophie Mavrogeni
- Onassis Cardiac Surgery Center, Athens, Greece
- Kapodistrian University of Athens, Athens, Greece
| | - Ntobeko Ntusi
- University of Cape Town, Cape Town, South Africa
- Groote Schuur Hospital, Cape Town, South Africa
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Purvi Parwani
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R., Pisa, Italy
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University, Indianapolis, USA
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, Mie, Japan
| | - Jeanette Schulz-Menger
- harite Hospital, University of Berlin, Berlin, Germany
- HELIOS-Clinics Berlin-Buch, Berlin, Germany
| | | | | | | |
Collapse
|
11
|
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Int J Mol Sci 2021; 22:ijms22094301. [PMID: 33919065 PMCID: PMC8122484 DOI: 10.3390/ijms22094301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
Collapse
|
12
|
Broncano J, Bhalla S, Caro P, Hidalgo A, Vargas D, Williamson E, Gutiérrez F, Luna A. Cardiac MRI in Patients with Acute Chest Pain. Radiographics 2020; 41:8-31. [PMID: 33337967 DOI: 10.1148/rg.2021200084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute chest pain is a common reason for visits to the emergency department. It is important to distinguish among the various causes of acute chest pain, because treatment and prognosis are substantially different among the various conditions. It is critical to exclude acute coronary syndrome (ACS), which is a major cause of hospitalization, death, and health care costs worldwide. Myocardial ischemia is defined as potential myocyte death secondary to an imbalance between oxygen supply and demand due to obstruction of an epicardial coronary artery. Unobstructed coronary artery disease can have cardiac causes (eg, myocarditis, myocardial infarction with nonobstructed coronary arteries, and Takotsubo cardiomyopathy), and noncardiac diseases can manifest with acute chest pain and increased serum cardiac biomarker levels. In the emergency department, cardiac MRI may aid in the identification of patients with non-ST-segment elevation myocardial infarction or unstable angina or ACS with unobstructed coronary artery disease, if the patient's clinical history is known to be atypical. Also, cardiac MRI is excellent for risk stratification of patients for adverse left ventricular remodeling or major adverse cardiac events. Cardiac MRI should be performed early in the course of the disease (<2 weeks after onset of symptoms). Steady-state free-precession T2-weighted MRI with late gadolinium enhancement is the mainstay of the cardiac MRI protocol. Further sequences can be used to analyze the different pathophysiologic subjacent mechanisms of the disease, such as microvascular obstruction or intramyocardial hemorrhage. Finally, cardiac MRI may provide several prognostic biomarkers that help in follow-up of these patients. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Pilar Caro
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Alberto Hidalgo
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Daniel Vargas
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Eric Williamson
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Fernando Gutiérrez
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESSALTA, HT Médica, Avenida el Brillante, number 36, 14012, Córdoba, Spain (J.B.); Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B., F.G.); Department of Radiology, HT-DADISA, HT Médica, Cádiz, Spain (P.C.); Radiology Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.H.); Department of Radiology, University of Colorado-Anschutz Medical Campus, Aurora, Colo (D.V.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.W.); and MRI Section, Department of Radiology, Clínica las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
13
|
Linhares-Filho J, Hueb W, Lima E, Rezende P, Azevedo D, Rochitte C, Nomura C, Serrano-Junior C, Ramires J, Kalil-Filho R. Long-term prognostic value of late gadolinium enhancement and periprocedural myocardial infarction after uncomplicated revascularization: MASS-V follow-up. Eur Heart J Cardiovasc Imaging 2020; 23:255-265. [PMID: 33280019 DOI: 10.1093/ehjci/jeaa328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
AIMS Cardiac biomarkers elevation is common after revascularization, even in absence of periprocedural myocardial infarction (PMI) detection by imaging methods. Thus, late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) may be useful on PMI diagnosis and prognosis. We sought to evaluate long-term prognostic value of PMI and new LGE after revascularization. METHODS AND RESULTS Two hundred and two patients with multivessel coronary disease and preserved ventricular function who underwent elective revascularization were included, of whom 136 (67.3%) underwent coronary artery bypass grafting and 66 (32.7%) percutaneous coronary intervention. The median follow-up was 5 years (4.8-5.8 years). Cardiac biomarkers measurement and LGE-CMR were performed before and after procedures. The Society for Cardiovascular Angiography and Interventions definition was used to assess PMI. Primary endpoint was composed of death, infarction, additional revascularization, or cardiac hospitalization. Primary endpoint was observed in 29 (14.3%) patients, of whom 13 (14.9%) had PMI and 16 (13.9%) did not (P = 0.93). Thirty-six (17.8%) patients had new LGE. Twenty (12.0%) events occurred in patients without new LGE and 9 (25.2%) in patients with it (P = 0.045). LGE was also associated to increased mortality, with 4 (2.4%) and 4 (11.1%) deaths in subjects without and with it (P = 0.02). LGE was the only independent predictor of primary endpoint and mortality (P = 0.03 and P = 0.02). Median LGE mass was estimated at 4.6 g. Patients with new LGE had a greater biomarkers release (median troponin: 8.9 ng/mL vs. 1.8 ng/mL and median creatine kinase-MB: 38.0 ng/mL vs. 12.3 ng/mL; P < 0.001 in both comparisons). CONCLUSIONS New LGE was shown to be better prognostic predictor than biomarker-only PMI definition after uncomplicated revascularization. Furthermore, new LGE was the only independent predictor of cardiovascular events and mortality. CLINICAL TRIAL REGISTRATION http://www.controlled-trials.com/ISRCTN09454308.
Collapse
Affiliation(s)
- Jaime Linhares-Filho
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Whady Hueb
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Eduardo Lima
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Paulo Rezende
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Diogo Azevedo
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Carlos Rochitte
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Cesar Nomura
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Carlos Serrano-Junior
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - José Ramires
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| | - Roberto Kalil-Filho
- Department of Clinical Cardiology, Heart Institute (InCor) University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 44, AB, Room 114, Cerqueira César, São Paulo 05403-000, Brazil
| |
Collapse
|
14
|
A Comparison of Three-Dimensional Speckle Tracking Echocardiography Parameters in Predicting Left Ventricular Remodeling. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:8847144. [PMID: 32802300 PMCID: PMC7416266 DOI: 10.1155/2020/8847144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 01/19/2023]
Abstract
Three-dimensional speckle tracking echocardiography (3D STE) is an emerging noninvasive method for predicting left ventricular remodeling (LVR) after acute myocardial infarction (AMI). Previous studies analyzed the predictive value of 3D STE with traditional models. However, no models that contain comprehensive risk factors were assessed, and there are limited data on the comparison of different 3D STE parameters. In this study, we sought to build a machine learning model for predicting LVR in AMI patients after effective percutaneous coronary intervention (PCI) that contains the majority of the clinical risk factors and compare 3D STE parameters values for LVR prediction. We enrolled 135 first-onset AMI patients (120 males, mean age 54 ± 9 years). All patients went through a 3D STE and a traditional transthoracic echocardiography 24 hours after reperfusion. A second echocardiography was repeated at the three-month follow-up to detect LVR (defined as a 20 percent increase in left ventricular end-diastolic volume). Six models were constructed using 15 risk factors. A receiver operator characteristic curve and four performance measurements were used as evaluation methods. Feature importance was used to compare 3D STE parameters. 26 patients (19.3%) had LVR. Our evaluation showed that RF can best predict LVR with the best AUC of 0.96. 3D GLS was the most valuable 3D STE parameters, followed by GCS, global area strain, and global radial strain (feature importance 0.146, 0.089, 0.087, and 0.069, respectively). To sum up, RF models can accurately predict the LVR after AMI, and 3D GLS was the best 3D STE parameters in predicting the LVR.
Collapse
|
15
|
Báez-Díaz C, Blanco-Blázquez V, Sánchez-Margallo FM, Bayes-Genis A, González I, Abad A, Steendam R, Franssen O, Palacios I, Sánchez B, Gálvez-Montón C, Crisóstomo V. Microencapsulated Insulin-Like Growth Factor-1 therapy improves cardiac function and reduces fibrosis in a porcine acute myocardial infarction model. Sci Rep 2020; 10:7166. [PMID: 32346015 PMCID: PMC7188803 DOI: 10.1038/s41598-020-64097-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) has demonstrated beneficial effects after myocardial infarction (MI). Microencapsulation of IGF-1 could potentially improve results. We aimed to test the effect of an intracoronary (IC) infusion of microencapsulated IGF-1 in a swine acute MI model. For that purpose IC injection of a 10 ml solution of 5 × 106 IGF-1 loaded microspheres (MSPs) (n = 8, IGF-1 MSPs), 5 × 106 unloaded MSPs (n = 9; MSPs) or saline (n = 7; CON) was performed 48 hours post-MI. Left ventricular ejection fraction (LVEF), indexed ventricular volumes and infarct size (IS) were determined by cardiac magnetic resonance at pre-injection and 10 weeks. Animals were euthanized at 10 weeks, and myocardial fibrosis and vascular density were analysed. End-study LVEF was significantly greater in IGF-1 MSPs compared to MSPs and CON, while ventricular volumes exhibited no significant differences between groups. IS decreased over time in all groups. Collagen volume fraction on the infarct area was significantly reduced in IGF-1 MSPs compared to CON and MSPs. Vascular density analysis of infarct and border zones showed no significant differences between groups. In conclusion, the IC injection of 5 × 106 IGF-1 loaded MSPs in a porcine acute MI model successfully improves cardiac function and limits myocardial fibrosis, which could be clinically relevant.
Collapse
Affiliation(s)
- Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.
- CIBERCV, Madrid, Spain.
| | | | | | - Antoni Bayes-Genis
- CIBERCV, Madrid, Spain
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Irene González
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Ana Abad
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Rob Steendam
- Innocore Pharmaceuticals, Groningen, The Netherlands
| | | | | | | | - Carolina Gálvez-Montón
- CIBERCV, Madrid, Spain
- ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBERCV, Madrid, Spain
| |
Collapse
|
16
|
Perez-Terol I, Rios-Navarro C, de Dios E, Morales JM, Gavara J, Perez-Sole N, Diaz A, Minana G, Segura-Sabater R, Bonanad C, Bayés-Genis A, Husser O, Monmeneu JV, Lopez-Lereu MP, Nunez J, Chorro FJ, Ruiz-Sauri A, Bodi V, Monleon D. Magnetic resonance microscopy and correlative histopathology of the infarcted heart. Sci Rep 2019; 9:20017. [PMID: 31882712 PMCID: PMC6934559 DOI: 10.1038/s41598-019-56436-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Delayed enhancement cardiovascular magnetic resonance (MR) is the gold-standard for non-invasive assessment after myocardial infarction (MI). MR microscopy (MRM) provides a level of detail comparable to the macro objective of light microscopy. We used MRM and correlative histopathology to identify infarct and remote tissue in contrast agent-free multi-sequence MRM in swine MI hearts. One control group (n = 3 swine) and two experimental MI groups were formed: 90 min of ischemia followed by 1 week (acute MI = 6 swine) or 1 month (chronic MI = 5 swine) reperfusion. Representative samples of each heart were analysed by contrast agent-free multi-sequence (T1-weighting, T2-weighting, T2*-weighting, T2-mapping, and T2*-mapping). MRM was performed in a 14-Tesla vertical axis imager (Bruker-AVANCE 600 system). Images from MRM and the corresponding histopathological stained samples revealed differences in signal intensities between infarct and remote areas in both MI groups (p-value < 0.001). The multivariable models allowed us to precisely classify regions of interest (acute MI: specificity 92% and sensitivity 80%; chronic MI: specificity 100% and sensitivity 98%). Probabilistic maps based on MRM images clearly delineated the infarcted regions. As a proof of concept, these results illustrate the potential of MRM with correlative histopathology as a platform for exploring novel contrast agent-free MR biomarkers after MI.
Collapse
Affiliation(s)
- Itziar Perez-Terol
- Laboratory of Metabolomics, Institute of Health Research-INCLIVA, Valencia, Spain
| | - Cesar Rios-Navarro
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Elena de Dios
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Jose M Morales
- Laboratory of Metabolomics, Institute of Health Research-INCLIVA, Valencia, Spain.,Unidad Central de Investigación Biomédica, University of Valencia, Valencia, Spain.,Pathology Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Jose Gavara
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Nerea Perez-Sole
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Ana Diaz
- Unidad Central de Investigación Biomédica, University of Valencia, Valencia, Spain
| | - Gema Minana
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | | | - Clara Bonanad
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Antoni Bayés-Genis
- Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Cardiology Department and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol. Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oliver Husser
- Department of Cardiology, St.-Johannes-Hospital, Dortmund, Germany
| | - Jose V Monmeneu
- Cardiovascular Magnetic Resonance Unit, ERESA, Valencia, Spain
| | | | - Julio Nunez
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Francisco J Chorro
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Amparo Ruiz-Sauri
- Pathology Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Vicente Bodi
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain. .,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain. .,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain.
| | - Daniel Monleon
- Laboratory of Metabolomics, Institute of Health Research-INCLIVA, Valencia, Spain. .,Pathology Department, School of Medicine, University of Valencia, Valencia, Spain. .,Centro de Investigación Biomédica en Red - Fragilidad y Envejecimiento Saludable (CIBER-FES), Madrid, Spain.
| |
Collapse
|
17
|
Karamitsos TD, Arvanitaki A, Karvounis H, Neubauer S, Ferreira VM. Myocardial Tissue Characterization and Fibrosis by Imaging. JACC Cardiovasc Imaging 2019; 13:1221-1234. [PMID: 31542534 DOI: 10.1016/j.jcmg.2019.06.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Myocardial fibrosis, either focal or diffuse, is a common feature of many cardiac diseases and is associated with a poor prognosis for major adverse cardiovascular events. Although histological analysis remains the gold standard for confirming the presence of myocardial fibrosis, endomyocardial biopsy is invasive, has sampling errors, and is not practical in the routine clinical setting. Cardiac imaging modalities offer noninvasive surrogate biomarkers not only for fibrosis but also for myocardial edema and infiltration to varying degrees, and have important roles in the diagnosis and management of cardiac diseases. This review summarizes important pathophysiological features in the development of commonly encountered cardiac diseases, and the principles, advantages, and disadvantages of various cardiac imaging modalities (echocardiography, single-photon emission computer tomography, positron emission tomography, multidetector computer tomography, and cardiac magnetic resonance) for myocardial tissue characterization, with an emphasis on imaging focal and diffuse myocardial fibrosis.
Collapse
Affiliation(s)
- Theodoros D Karamitsos
- 1st Department of Cardiology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| | - Alexandra Arvanitaki
- 1st Department of Cardiology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Haralambos Karvounis
- 1st Department of Cardiology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vanessa M Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Morariu M, Hodas R, Benedek T, Benedek I, Opincariu D, Mester A, Chitu M, Kovacs I, Rezus C, Pasaroiu D, Mitra N, Szilágyi SM, Georgescu D, Rezus E. Impact of inflammation-mediated response on pan-coronary plaque vulnerability, myocardial viability and ventricular remodeling in the postinfarction period - the VIABILITY study: Protocol for a non-randomized prospective clinical study. Medicine (Baltimore) 2019; 98:e15194. [PMID: 31027064 PMCID: PMC6831282 DOI: 10.1097/md.0000000000015194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION While the role of inflammation in acute coronary events is well established, the impact of inflammatory-mediated vulnerability of coronary plaques from the entire coronary tree, on the extension of ventricular remodeling and scaring, has not been clarified yet. MATERIALS AND METHODS The present manuscript describes the procedures of the VIABILITY trial, a descriptive prospective single-center cohort study. The main purpose of this trial is to assess the link between systemic inflammation, pan-coronary plaque vulnerability (referring to the plaque vulnerability within the entire coronary tree), myocardial viability and ventricular remodeling in patients who had suffered a recent ST-segment elevation acute myocardial infarction (STEMI). One hundred patients with STEMI who underwent successful revascularization of the culprit lesion in the first 12 hours after the onset of symptoms will be enrolled in the study. The level of systemic inflammation will be evaluated based on the serum biomarker levels (hs-CRP, matrix metalloproteinases, interleukin-6) in the acute phase of the myocardial infarction (MI) and at 1 month. Pan-coronary plaque vulnerability will be assessed based on serum biomarkers known to be associated with increased plaque vulnerability (V-CAM or I-CAM) and at 1 month after infarction, based on computed tomographic angiography analysis of vulnerability features of all coronary plaques. Myocardial viability and remodeling will be assessed based on 3D speckle tracking echocardiography associated with dobutamine infusion and LGE-CMR associated with post-processing imaging methods. The study population will be categorized in 2 subgroups: subgroup 1 - subjects with STEMI and increased inflammatory response at 7 days after the acute event (hs-CRP ≥ 3 mg/dl), and subgroup 2 - subjects with STEMI and no increased inflammatory response at 7 days (hs-CRP < 3 mg/dl). Study outcomes will consist in the rate of post-infarction heart failure development and the major adverse events (MACE) rate. CONCLUSION VIABILITY is the first prospective study designed to evaluate the influence of infarct-related inflammatory response on several major determinants of post-infarction outcomes, such as coronary plaque vulnerability, myocardial viability, and ventricular remodeling.
Collapse
Affiliation(s)
- Mirabela Morariu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Roxana Hodas
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Theodora Benedek
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Imre Benedek
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Diana Opincariu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Andras Mester
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
| | - Monica Chitu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Istvan Kovacs
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures
| | - Ciprian Rezus
- University of Medicine and Pharmacy ‘Gr.T.Popa’, Iasi
| | - Dan Pasaroiu
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
| | - Noemi Mitra
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
| | - Sándor M. Szilágyi
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu-Mures
- Department of Informatics, Faculty of Science, University of Medicine, Pharmacy
| | - Dan Georgescu
- Department of Internal Medicine, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Romania
| | - Elena Rezus
- University of Medicine and Pharmacy ‘Gr.T.Popa’, Iasi
| |
Collapse
|
19
|
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285:1-9. [PMID: 30939341 DOI: 10.1016/j.atherosclerosis.2019.03.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The stem cell-based therapy has emerged as a promising therapeutic strategy for treating cardiovascular ischemic diseases (CVIDs), such as myocardial infarction (MI). However, some important functional shortcomings of stem cell transplantation, such as immune rejection, tumorigenicity and infusional toxicity, have overshadowed stem cell therapy in the setting of cardiovascular diseases (CVDs). Accumulating evidence suggests that the therapeutic effects of transplanted stem cells are predominately mediated by secreting paracrine factors, importantly, microRNAs (miRs) present in the secreted exosomes. Therefore, novel cell-free therapy based on the stem cell-secreted exosomal miRs can be considered as a safe and effective alternative tool to stem cell therapy for the treatment of CVDs. Stem cell-derived miRs have recently been found to transfer, via exosomes, from a transplanted stem cell into a recipient cardiac cell, where they regulate various cellular process, such as proliferation, apoptosis, stress responses, as well as differentiation and angiogenesis. The present review aimed to summarize cardioprotective exosomal miRs secreted by transplanted stem cells from various sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and cardiac stem/progenitor cells, which showed beneficial modulatory effects on the myocardial infracted heart. In summary, stem cell-exosomal miRs, including miR-19a, mirR-21, miR-21-5p, miR-21-a5p, miR-22 miR-24, miR-26a, miR-29, miR-125b-5p, miR-126, miR-201, miR-210, and miR-294, have been shown to have cardioprotective effects by enhancing cardiomyocyte survival and function and attenuating cardiac fibrosis. Additionally, MCS-exosomal miRs, including miR-126, miR-210, miR-21, miR-23a-3p and miR-130a-3p, are found to exert cardioprotective effects through induction of angiogenesis in ischemic heart after MI.
Collapse
|
20
|
Das A, Plein S, Dall’Armellina E. Cardiorresonancia para la estratificación pronóstica del infarto de miocardio. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2018.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Association Between Acute Inflammatory Response and Infarct Size in Stemi Patients Undergoing Primary PCI. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2018. [DOI: 10.2478/jce-2018-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Background: The inflammatory response of the immune system plays a major role in the period following an acute myocardial infarction (MI), as it coordinates the formation of the fibrous scar tissue that replaces the infarcted myocardial cells and ultimately leads to healing and remodeling of the affected zone. Along with other pro- and anti-inflammatory cytokines and acute phase proteins, interleukin-6 (IL-6) and C-reactive protein (CRP) are associated with the extent of the infarct size (IS) and may serve as predictors for remodeling and adverse left ventricular (LV) function. Material and methods: A single-center, non-randomized, observational prospective study was conducted, which included 75 patients with primary revascularized ST-elevation myocardial infarction (STEMI). High-sensitivity CRP (hs-CRP) serum levels were determined on day 1 and day 5 following the acute event. IL-6 was also determined on day 1. All patients underwent cardiac magnetic resonance imaging (CMR) at 1-month follow-up with determination of LV function and quantification of the scar tissue using late gadolinium enhancement imaging. The patients were divided into 2 groups based on baseline hs-CRP values. Results: Patients with higher baseline hs-CRP levels presented significantly higher infarct size (p = 0.0003), higher transmural extent (p <0.0001), lower LV ejection fraction (p = 0.0024), end-systolic (p = 0.0021) and end-diastolic (p = 0.0065) volumes. Small IS (<10%) recorded the lowest levels of hs-CRP, while IS >20% presented the highest levels of hs-CRP, at baseline and day 5 (p = 0.4 and 0.001). IL-6 levels were also associated with the magnitude of infarct scar: 2.17 pg/mL for IS <10%, 15.52 pg/mL for IS between 10% and 20%, and 24.52 pg/mL for IS >20%, p = 0.002. Conclusion: hs-CRP and IL-6 serum levels following an MI are correlated with IS, transmurality extent of the scar tissue, as well as with altered systolic and diastolic LV function determined by CMR at 1-month follow-up.
Collapse
|
22
|
Das A, Plein S, Dall'Armellina E. Role of CMR in Prognostic Stratification in Myocardial Infarction. ACTA ACUST UNITED AC 2018; 72:115-119. [PMID: 30224251 DOI: 10.1016/j.rec.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Arka Das
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Science, University of Leeds, Leeds, United Kingdom
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Science, University of Leeds, Leeds, United Kingdom
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Science, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
23
|
Arnold JR, McCann GP. Noninvasive Imaging Post-ST-Segment-Elevation Myocardial Infarction: Towards Targeted Therapy or Targeted End Points? Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.117.007179. [PMID: 29122842 DOI: 10.1161/circimaging.117.007179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J Ranjit Arnold
- From the Department of Cardiovascular Sciences, University of Leicester, and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom.
| | - Gerry P McCann
- From the Department of Cardiovascular Sciences, University of Leicester, and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom
| |
Collapse
|