1
|
Cheng Y, Rao P, Li S, Yu W, Tang Y, Wang R, He W, Liu J. Alcohol promotes hepatocyte injury via ER stress sensor XBP1s mediated regulation of autophagy and lysosomal activity. Toxicol Appl Pharmacol 2024; 492:117117. [PMID: 39362310 DOI: 10.1016/j.taap.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE Endoplasmic reticulum stress (ERS) plays an important role in the development of Alcoholic liver injury (ALI), but the exact mechanism needs further exploration. This study aims to investigate the role of ERS-XBP1s in ALI, and providing new target for the treatment of liver injury. METHOD The ALI model was constructed using the NIAAA method and was validated by several methods. ERS was detected using western-blot, RT-qPCR and immunohistochemistry. Apoptosis was measured by TUNEL staining, Hoechst staining, western-blot and Annexin V-FITC. Lysosomal function and autophagy were measured by Lyso-Tracker Green probe, western-blot and immunofluorescence, respectively. RESULTS The ALI model was successfully constructed as demonstrated by increased liver steatosis, inflammation and oxidative stress, and higher levels of serum ALT, AST and TG. Alcohol significantly increased the expression of ERS-related molecules, such as PERK, IRE1α, GRP78 and XBP1s, and promoted the nuclear translocation of XBP1s. Moreover, alcohol significantly increased apoptosis and inhibition of XBP1s could reverse this effect in vivo and in vitro. Interestingly, we found that alcohol significantly elevated hepatocyte LC3-II/I levels and concomitantly accumulation of P62, and this phenomenon was reversed by inhibiting XBP1s both in vivo and in vitro. Mechanistically, we found that alcohol activation of ER stress sensor XBP1s which promoted liver injury via inhibiting lysosomal function and autophagy activity in hepatocytes, whereas inhibition of XBP1s reduces hepatocyte apoptosis by restoring lysosomal activity and activating of autophagy. CONCLUSION Alcohol promotes hepatocytes injury via ER stress sensor XBP1s mediated inhibition of autophagy. Therefore, inhibition of XBP1 may protect the liver from alcohol-induced damage.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Peng Rao
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Shuojiao Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Wenxian Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yue Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ranran Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wei He
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei 230032, China..
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, Anhui Province, China.
| |
Collapse
|
2
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Hwang I, Kim BS, Lee HY, Cho SW, Lee SE, Ahn JY. PA2G4/EBP1 ubiquitination by PRKN/PARKIN promotes mitophagy protecting neuron death in cerebral ischemia. Autophagy 2024; 20:365-379. [PMID: 37712850 PMCID: PMC10813645 DOI: 10.1080/15548627.2023.2259215] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebral ischemia induces massive mitochondrial damage, leading to neuronal death. The elimination of damaged mitochondria via mitophagy is critical for neuroprotection. Here we show that the level of PA2G4/EBP1 (proliferation-associated 2G4) was notably increased early during transient middle cerebral artery occlusion and prevented neuronal death by eliciting cerebral ischemia-reperfusion (IR)-induced mitophagy. Neuron-specific knockout of Pa2g4 increased infarct volume and aggravated neuron loss with impaired mitophagy and was rescued by introduction of adeno-associated virus serotype 2 expressing PA2G4/EBP1. We determined that PA2G4/EBP1 is ubiquitinated on lysine 376 by PRKN/PARKIN on the damaged mitochondria and interacts with receptor protein SQSTM1/p62 for mitophagy induction. Thus, our study suggests that PA2G4/EBP1 ubiquitination following cerebral IR-injury promotes mitophagy induction, which may be implicated in neuroprotection.Abbreviations: AAV: adeno-associated virus; ACTB: actin beta; BNIP3L/NIX: BCL2 interacting protein 3 like; CA1: Cornu Ammonis 1; CASP3: caspase 3; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; PA2G4/EBP1: proliferation-associated 2G4; FUNDC1: FUN14 domain containing 1; IB: immunoblotting; ICC: immunocytochemistry; IHC: immunohistochemistry; IP: immunoprecipitation; MCAO: middle cerebral artery occlusion; MEF: mouse embryonic fibroblast; OGD: oxygen-glucose deprivation; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced kinase 1; RBFOX3/NeuN: RNA binding fox-1 homolog 3; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; WT: wild-type.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, Seongbuk-gu, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
4
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Qian H, Ding WX. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1415-1426. [PMID: 36906265 PMCID: PMC10642158 DOI: 10.1016/j.ajpath.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
6
|
Zhang C, Chen H, Rodriguez Y, Ma X, Swerdlow RH, Zhang J, Ding WX. A perspective on autophagy and transcription factor EB in Alcohol-Associated Alzheimer's disease. Biochem Pharmacol 2023; 213:115576. [PMID: 37127251 PMCID: PMC11009931 DOI: 10.1016/j.bcp.2023.115576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of progressive dementia and there is no truly efficacious treatment. Accumulating evidence indicates that impaired autophagic function for removal of damaged mitochondria and protein aggregates such as amyloid and tau protein aggregates may contribute to the pathogenesis of AD. Epidemiologic studies have implicated alcohol abuse in promoting AD, yet the underlying mechanisms are poorly understood. In this review, we discuss mechanisms of selective autophagy for mitochondria and protein aggregates and how these mechanisms are impaired by aging and alcohol consumption. We also discuss potential genetic and pharmacological approaches for targeting autophagy/mitophagy, as well as lysosomal and mitochondrial biogenesis, for the potential prevention and treatment of AD.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hao Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yssa Rodriguez
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Internal Medicine, Division of Gastroenterology, Hepatology & Motility, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Mechanistic Research into the Effects of the Jianpi Xiaozhi Formula on Liver Injury in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7490747. [PMID: 35911164 PMCID: PMC9328966 DOI: 10.1155/2022/7490747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Objective The purpose of this study was to explore the mechanism of Jianpi Xiaozhi Formula (JPXZF) action in attenuating liver injury in a rat model of type 2 diabetes mellitus (T2DM). Methods A rat model of T2DM was established. Forty-eight male Sprague–Dawley (SD) rats were randomly allocated to six groups: healthy untreated rats (normal control (NC)), rats with diabetes mellitus (DM), diabetic rats treated with low-dosage JPXZF (DM + JL), diabetic rats treated with an intermediate JPXZF dosage (DM + JM), diabetic rats treated with high-dosage JPXZF (DM + JH), and diabetic rats treated with 4-phenylbutyric acid (PBA) (DM + PBA). The rats in each group were given the indicated drugs for 8 weeks, and pathological changes in the liver tissues of each rat group were observed by haematoxylin-eosin (HE) staining. Reverse-transcription polymerase chain reaction (RT-PCR) and Western blotting (WB) were performed to determine the expression of glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), family with sequence similarity 134, member B (FAM134B), P62, Beclin-1, and light chain 3II/I (LC3II/I) genes and proteins in the liver tissues of the rats in each group. Immunofluorescence was used to observe changes in FAM134B expression. Results After successfully establishing the rat model, RT-PCR assays revealed that, compared with those in the NC group rats, the expression levels of GRP78, ATF6, and P62 mRNA in the livers of the DM group rats were significantly increased, and the relative expression levels of FAM134B and Beclin-1 mRNA were significantly decreased. Compared with that in the DM group, the relative expression of GRP78, ATF6, and P62 mRNA in the liver of the rats in each JPXZF intervention group was decreased in a dosage-dependent manner, and the relative expression of FAM134B and Beclin-1 mRNA was increased significantly (p < 0.05). WB indicated that, compared with that in the NC group rats, the LC3II/I protein expression ratio in the liver of the DM group rats was significantly reduced, and the LC3II/I protein expression ratio in the liver of the rats in each JPXZF intervention group was significantly increased. In addition, the expression of the other measured proteins was consistent with that of the corresponding mRNA measured by RT-PCR (p < 0.05). The immunofluorescence assay results showed that FAM134B changes were consistent with the results obtained by RT-PCR and WB (p < 0.05). Conclusion Jianpi Xiaozhi Formula may be effective in treating liver injury in diabetic rats by regulating autophagy induced by endoplasmic reticulum stress (ERS).
Collapse
|
8
|
Punicalagin Protects against Diabetic Liver Injury by Upregulating Mitophagy and Antioxidant Enzyme Activities. Nutrients 2022; 14:nu14142782. [PMID: 35889739 PMCID: PMC9319303 DOI: 10.3390/nu14142782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic liver injury has received increasing attention as a serious complication of type 2 diabetes. Punicalagin (PU), a major component of pomegranate polyphenols, has various biological activities such as antioxidant, anti-inflammatory, and lipid metabolism regulation. In this study, we observed the protective effect of punicalagin on a high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic liver injury in mice and revealed the underlying mechanism. The results showed that fasting blood glucose (FBG), fasting serum insulin (FINS), and homeostasis model assessment for insulin resistance (HOMA-IR) in diabetic liver injury mice were significantly decreased after punicalagin intervention. Simultaneously, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFA), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) in the serum and liver were significantly decreased, with reductions in fat lesions and inflammatory cells. Mitophagy is a selective autophagy that maintains a balance between the quality and quantity of intracellular mitochondria. Studies have shown that mitophagy is closely related to the occurrence and development of diabetic liver injury. In our study, the mitochondrial membrane potential (MMP) was significantly increased in mice with diabetic liver injury after punicalagin intervention; the protein expression of Pink1, Parkin, Bnip3, LC3b, P62, manganese superoxide dismutase (MnSOD), and catalase (CAT) was significantly increased in the liver; and the activities of MnSOD and CAT in the serum and liver were significantly increased, which is consistent with the results of in vitro experiments. In summary, our study provided evidence that punicalagin could reduce the level of oxidative stress in the liver by upregulating mitophagy and the activities of antioxidant enzymes, thus having a certain protective effect against diabetic liver injury.
Collapse
|
9
|
Jiang Y, Xu J, Huang P, Yang L, Liu Y, Li Y, Wang J, Song H, Zheng P. Scoparone Improves Nonalcoholic Steatohepatitis Through Alleviating JNK/Sab Signaling Pathway-Mediated Mitochondrial Dysfunction. Front Pharmacol 2022; 13:863756. [PMID: 35592421 PMCID: PMC9110978 DOI: 10.3389/fphar.2022.863756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023] Open
Abstract
The activated c-Jun N-terminal kinase (JNK) specifically combined with SH3 domain-binding protein 5 (Sab) may mediate damage to the mitochondrial respiratory chain. Whether mitochondrial dysfunction induced by the JNK/Sab signaling pathway plays a pivotal role in the lipotoxic injury of nonalcoholic steatohepatitis (NASH) remains a lack of evidence. Scoparone, a natural compound from Traditional Chinese Medicine herbs, has the potential for liver protection and lipid metabolism regulation. However, the effect of scoparone on NASH induced by a high-fat diet (HFD) as well as its underlying mechanism remains to be elucidated. The HepG2 and Huh7 cells with/without Sab-knockdown induced by palmitic acid (PA) were used to determine the role of JNK/Sab signaling in mitochondrial dysfunction and cellular lipotoxic injury. To observe the effect of scoparone on the lipotoxic injured hepatocytes, different dose of scoparone together with PA was mixed into the culture medium of HepG2 and AML12 cells to incubate for 24 h. In addition, male C57BL/6J mice were fed with an HFD for 22 weeks to induce the NASH model and were treated with scoparone for another 8 weeks to investigate its effect on NASH. Molecules related to JNK/Sab signaling, mitochondrial function, and lipotoxic injury were detected in in vitro and/or in vivo experiments. The results showed that PA-induced activation of JNK/Sab signaling was blocked by Sab knockdown in hepatocytes, which improved mitochondrial damage, oxidative stress, hepatosteatosis, cell viability, and apoptosis. Scoparone demonstrated a similar effect on the PA-induced hepatocytes as Sab knockdown. For the NASH mice, treatment with scoparone also downregulated the activation of JNK/Sab signaling, improved histopathological changes of liver tissues including mitochondrial number and morphology, lipid peroxide content, hepatosteatosis and inflammation obviously, as well as decreased the serum level of lipid and transaminases. Taken together, this study confirms that activation of the JNK/Sab signaling pathway-induced mitochondrial dysfunction plays a crucial role in the development of NASH. Scoparone can improve the lipotoxic liver injury partially by suppressing this signaling pathway, making it a potential therapeutic compound for NASH.
Collapse
Affiliation(s)
- Yuwei Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoya Xu
- Department of Gout, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Chao X, Wang S, Hlobik M, Ballabio A, Ni HM, Ding WX. Loss of Hepatic Transcription Factor EB Attenuates Alcohol-Associated Liver Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:87-103. [PMID: 34717896 PMCID: PMC8747011 DOI: 10.1016/j.ajpath.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
Alcohol is a well-known risk factor for hepatocellular carcinoma. Autophagy plays a dual role in liver cancer, as it suppresses tumor initiation and promotes tumor progression. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy, which is impaired in alcohol-related liver disease. However, the role of TFEB in alcohol-associated liver carcinogenesis is unknown. Liver-specific Tfeb knockout (KO) mice and their matched wild-type (WT) littermates were injected with the carcinogen diethylnitrosamine (DEN), followed by chronic ethanol feeding. The numbers of both total and larger tumors increased significantly in DEN-treated mice fed ethanol diet than in mice fed control diet. Although the number of tumors was not different between WT and L-Tfeb KO mice fed either control or ethanol diet, the number of larger tumors was less in L-Tfeb KO mice than in WT mice. No differences were observed in liver injury, steatosis, inflammation, ductular reaction, fibrosis, and tumor cell proliferation in DEN-treated mice fed ethanol. However, the levels of glypican 3, a marker of malignant hepatocellular carcinoma, markedly decreased in DEN-treated L-Tfeb KO mice fed ethanol in comparison to the WT mice. These findings indicate that chronic ethanol feeding promotes DEN-initiated liver tumor development, which is attenuated by genetic deletion of hepatic TFEB.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Madeline Hlobik
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
11
|
Beyer AM, Norwood Toro LE, Hughes WE, Young M, Clough AV, Gao F, Medhora M, Audi SH, Jacobs ER. Autophagy, TERT, and mitochondrial dysfunction in hyperoxia. Am J Physiol Heart Circ Physiol 2021; 321:H985-H1003. [PMID: 34559580 PMCID: PMC8616608 DOI: 10.1152/ajpheart.00166.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Ventilation with gases containing enhanced fractions of oxygen is the cornerstone of therapy for patients with hypoxia and acute respiratory distress syndrome. Yet, hyperoxia treatment increases free reactive oxygen species (ROS)-induced lung injury, which is reported to disrupt autophagy/mitophagy. Altered extranuclear activity of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), plays a protective role in ROS injury and autophagy in the systemic and coronary endothelium. We investigated interactions between autophagy/mitophagy and TERT that contribute to mitochondrial dysfunction and pulmonary injury in cultured rat lung microvascular endothelial cells (RLMVECs) exposed in vitro, and rat lungs exposed in vivo to hyperoxia for 48 h. Hyperoxia-induced mitochondrial damage in rat lungs [TOMM20, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], which was paralleled by increased markers of inflammation [myeloperoxidase (MPO), IL-1β, TLR9], impaired autophagy signaling (Beclin-1, LC3B-II/1, and p62), and decreased the expression of TERT. Mitochondrial-specific autophagy (mitophagy) was not altered, as hyperoxia increased expression of Pink1 but not Parkin. Hyperoxia-induced mitochondrial damage (TOMM20) was more pronounced in rats that lack the catalytic subunit of TERT and resulted in a reduction in cellular proliferation rather than cell death in RLMVECs. Activation of TERT or autophagy individually offset mitochondrial damage (MTT). Combined activation/inhibition failed to alleviate hyperoxic-induced mitochondrial damage in vitro, whereas activation of autophagy in vivo decreased mitochondrial damage (MTT) in both wild type (WT) and rats lacking TERT. Functionally, activation of either TERT or autophagy preserved transendothelial membrane resistance. Altogether, these observations show that activation of autophagy/mitophagy and/or TERT mitigate loss of mitochondrial function and barrier integrity in hyperoxia.NEW & NOTEWORTHY In cultured pulmonary artery endothelial cells and in lungs exposed in vivo to hyperoxia, autophagy is activated, but clearance of autophagosomes is impaired in a manner that suggests cross talk between TERT and autophagy. Stimulation of autophagy prevents hyperoxia-induced decreases in mitochondrial metabolism and sustains monolayer resistance. Hyperoxia increases mitochondrial outer membrane (TOMM20) protein, decreases mitochondrial function, and reduces cellular proliferation without increasing cell death.
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura E Norwood Toro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William E Hughes
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Micaela Young
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne V Clough
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Said H Audi
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| |
Collapse
|
12
|
Qian H, Chao X, Williams J, Fulte S, Li T, Yang L, Ding WX. Autophagy in liver diseases: A review. Mol Aspects Med 2021; 82:100973. [PMID: 34120768 DOI: 10.1016/j.mam.2021.100973] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The liver is a highly dynamic metabolic organ that plays critical roles in plasma protein synthesis, gluconeogenesis and glycogen storage, cholesterol metabolism and bile acid synthesis as well as drug/xenobiotic metabolism and detoxification. Research from the past decades indicate that autophagy, the cellular catabolic process mediated by lysosomes, plays an important role in maintaining cellular and metabolic homeostasis in the liver. Hepatic autophagy fluctuates with hormonal cues and the availability of nutrients that respond to fed and fasting states as well as circadian activities. Dysfunction of autophagy in liver parenchymal and non-parenchymal cells can lead to various liver diseases including non-alcoholic fatty liver diseases, alcohol associated liver disease, drug-induced liver injury, cholestasis, viral hepatitis and hepatocellular carcinoma. Therefore, targeting autophagy may be a potential strategy for treating these various liver diseases. In this review, we will discuss the current progress on the understanding of autophagy in liver physiology. We will also discuss several forms of selective autophagy in the liver and the molecular signaling pathways in regulating autophagy of different cell types and their implications in various liver diseases.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Jessica Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
13
|
Vilfranc CL, Che LX, Patra KC, Niu L, Olowokure O, Wang J, Shah SA, Du CY. BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) regulation of β-catenin signaling in the progression of drug-induced hepatic fibrosis and carcinogenesis. World J Hepatol 2021; 13:343-361. [PMID: 33815677 PMCID: PMC8006081 DOI: 10.4254/wjh.v13.i3.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) is a liver tumor suppressor, which is downregulated in a large number of patients with liver diseases. BRUCE facilitates DNA damage repair to protect the mouse liver against the hepatocarcinogen diethylnitrosamine (DEN)-dependent acute liver injury and carcinogenesis. While there exists an established pathologic connection between fibrosis and hepatocellular carcinoma (HCC), DEN exposure alone does not induce robust hepatic fibrosis. Further studies are warranted to identify new suppressive mechanisms contributing to DEN-induced fibrosis and HCC.
AIM To investigate the suppressive mechanisms of BRUCE in hepatic fibrosis and HCC development.
METHODS Male C57/BL6/J control mice [loxp/Loxp; albumin-cre (Alb-cre)-] and BRUCE Alb-Cre KO mice (loxp/Loxp; Alb-Cre+) were injected with a single dose of DEN at postnatal day 15 and sacrificed at different time points to examine liver disease progression.
RESULTS By using a liver-specific BRUCE knockout (LKO) mouse model, we found that BRUCE deficiency, in conjunction with DEN exposure, induced hepatic fibrosis in both premalignant as well as malignant stages, thus recapitulating the chronic fibrosis background often observed in HCC patients. Activated in fibrosis and HCC, β-catenin activity depends on its stabilization and subsequent translocation to the nucleus. Interestingly, we observed that livers from BRUCE KO mice demonstrated an increased nuclear accumulation and elevated activity of β-catenin in the three stages of carcinogenesis: Pre-malignancy, tumor initiation, and HCC. This suggests that BRUCE negatively regulates β-catenin activity during liver disease progression. β-catenin can be activated by phosphorylation by protein kinases, such as protein kinase A (PKA), which phosphorylates it at Ser-675 (pSer-675-β-catenin). Mechanistically, BRUCE and PKA were colocalized in the cytoplasm of hepatocytes where PKA activity is maintained at the basal level. However, in BRUCE deficient mouse livers or a human liver cancer cell line, both PKA activity and pSer-675-β-catenin levels were observed to be elevated.
CONCLUSION Our data support a “BRUCE-PKA-β-catenin” signaling axis in the mouse liver. The BRUCE interaction with PKA in hepatocytes suppresses PKA-dependent phosphorylation and activation of β-catenin. This study implicates BRUCE as a novel negative regulator of both PKA and β-catenin in chronic liver disease progression. Furthermore, BRUCE-liver specific KO mice serve as a promising model for understanding hepatic fibrosis and HCC in patients with aberrant activation of PKA and β-catenin.
Collapse
Affiliation(s)
- Chrystelle L Vilfranc
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Li-Xiao Che
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Krushna C Patra
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Olugbenga Olowokure
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Shimul A Shah
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Chun-Ying Du
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| |
Collapse
|
14
|
Wang F, Park JS, Ma Y, Ma H, Lee YJ, Lee GR, Yoo HS, Hong JT, Roh YS. Ginseng Saponin Enriched in Rh1 and Rg2 Ameliorates Nonalcoholic Fatty Liver Disease by Inhibiting Inflammasome Activation. Nutrients 2021; 13:nu13030856. [PMID: 33807927 PMCID: PMC7999915 DOI: 10.3390/nu13030856] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming one of the most common chronic liver diseases in the world. One of the features of NAFLD is hepatic fat accumulation, which further causes hepatic steatosis, fibrosis, and inflammation. Saponins, the major pharmacologically active ingredients isolated from Panax notoginseng, contain several ginsenosides, which have various pharmacological and therapeutic functions. However, the ginsenoside-specific molecular mechanism of saponins in NAFLD remains unknown. This study aimed to elucidate the effects of ginseng saponin extract and its ginsenosides on hepatic steatosis, fibrosis, and inflammation and their underlying action mechanism in NAFLD. Mice were fed a fast food diet (FFD) for 16 weeks to induce NAFLD and then treated with saponin extract (50 or 150 mg/kg) for the remaining nine weeks to determine the effects of saponin on NAFLD. Saponin extract administration significantly alleviated FFD-induced hepatic steatosis, fibrosis, and inflammation. Particularly, saponin extract, compared with conventional red ginseng, contained significantly increased amounts of ginsenosides (Rh1 (10.34-fold) and Rg2 (7.1-fold)). In vitro Rh1 and Rg2 treatments exerted an anti-steatotic effect in primary hepatocytes, an antifibrotic effect in hepatic stellate cells, and anti-inflammatory and pro-mitophagy effects in immortalized mouse Kupffer cells. Mechanistically, saponin extract alleviated lipopolysaccharide-induced NLRP3 inflammasome activation by promoting mitophagy. In conclusion, saponin extract inhibited inflammation-mediated pathological inflammasome activation in macrophages, thereby preventing NAFLD development. Thus, saponin extract administration may be an alternative method for NAFLD prevention.
Collapse
|
15
|
The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2020; 13:ph13120432. [PMID: 33260729 PMCID: PMC7760785 DOI: 10.3390/ph13120432] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal-dependent pathway for degrading cytoplasmic proteins, macromolecules, and organelles. Autophagy-related genes (Atgs) are the core molecular machinery in the control of autophagy, and several major functional groups of Atgs coordinate the entire autophagic process. Autophagy plays a dual role in liver cancer development via several critical signaling pathways, including the PI3K-AKT-mTOR, AMPK-mTOR, EGF, MAPK, Wnt/β-catenin, p53, and NF-κB pathways. Here, we review the signaling pathways involved in the cross-talk between autophagy and hepatocellular carcinoma (HCC) and analyze the status of the development of novel HCC therapy by targeting the core molecular machinery of autophagy as well as the key signaling pathways. The induction or the inhibition of autophagy by the modulation of signaling pathways can confer therapeutic benefits to patients. Understanding the molecular mechanisms underlying the cross-link of autophagy and HCC may extend to translational studies that may ultimately lead to novel therapy and regimen formation in HCC treatment.
Collapse
|
16
|
Correnti J, Lin C, Brettschneider J, Kuriakose A, Jeon S, Scorletti E, Oranu A, McIver-Jenkins D, Kaneza I, Buyco D, Saiman Y, Furth EE, Argemi J, Bataller R, Holland WL, Carr RM. Liver-specific ceramide reduction alleviates steatosis and insulin resistance in alcohol-fed mice. J Lipid Res 2020; 61:983-994. [PMID: 32398264 PMCID: PMC7328039 DOI: 10.1194/jlr.ra119000446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Alcohol's impairment of both hepatic lipid metabolism and insulin resistance (IR) are key drivers of alcoholic steatosis, the initial stage of alcoholic liver disease (ALD). Pharmacologic reduction of lipotoxic ceramide prevents alcoholic steatosis and glucose intolerance in mice, but potential off-target effects limit its strategic utility. Here, we employed a hepatic-specific acid ceramidase (ASAH) overexpression model to reduce hepatic ceramides in a Lieber-DeCarli model of experimental alcoholic steatosis. We examined effects of alcohol on hepatic lipid metabolism, body composition, energy homeostasis, and insulin sensitivity as measured by hyperinsulinemic-euglycemic clamp. Our results demonstrate that hepatic ceramide reduction ameliorates the effects of alcohol on hepatic lipid droplet (LD) accumulation by promoting VLDL secretion and lipophagy, the latter of which involves ceramide cross-talk between the lysosomal and LD compartments. We additionally demonstrate that hepatic ceramide reduction prevents alcohol's inhibition of hepatic insulin signaling. These effects on the liver are associated with a reduction in oxidative stress markers and are relevant to humans, as we observe peri- LD ASAH expression in human ALD. Together, our results suggest a potential role for hepatic ceramide inhibition in preventing ALD.
Collapse
Affiliation(s)
- Jason Correnti
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Chelsea Lin
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | | | - Amy Kuriakose
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Sookyoung Jeon
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Eleonora Scorletti
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Amanke Oranu
- Division of Gastroenterology, United Health Services, Binghamton, NY
| | - Dru McIver-Jenkins
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Isabelle Kaneza
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Delfin Buyco
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Yedidya Saiman
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Josepmaria Argemi
- Center for Liver Diseases, Pittsburgh Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ramon Bataller
- Center for Liver Diseases, Pittsburgh Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Rotonya M Carr
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA. mailto:
| |
Collapse
|
17
|
Ma X, McKeen T, Zhang J, Ding WX. Role and Mechanisms of Mitophagy in Liver Diseases. Cells 2020; 9:cells9040837. [PMID: 32244304 PMCID: PMC7226762 DOI: 10.3390/cells9040837] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Tara McKeen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA;
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
- Correspondence: ; Tel.: +1-913-588-9813
| |
Collapse
|
18
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Xue S, Zhou Y, Zhang J, Xiang Z, Liu Y, Miao T, Liu G, Liu B, Liu X, Shen L, Zhang Z, Li M, Miao Q. Anemoside B4 exerts anti-cancer effect by inducing apoptosis and autophagy through inhibiton of PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Am J Transl Res 2019; 11:2580-2589. [PMID: 31105864 PMCID: PMC6511782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide and novel therapeutic approaches are urgently required. Anemoside B4 (AB4) is a compound extracted from Pulsatilla chinensis (P. chinensis). Previous studies have indicated that P. chinensis extract P. chinensis saponins has anti-cancer activity. However, the pharmacological effect of AB4 in cancer is largely unknown. In this study, we investigated the anti-cancer efficacy of AB4 in HCC. We used CCK-8 assay and colony formation assay to evaluate the cytotoxicity of AB4 and found that this agent markedly inhibited SMMC7721 cell proliferation. By using a panel of morphological and molecular experiments, we reported that AB4 induced HCC SMMC7721 cell apoptosis and autophagy. Notably, AB4 treatment acts on the Bcl-2-caspase-3 pathway and Beclin-1-LC3-p62 pathway, thereby regulates both apoptosis and autophagy. Finally, we showed that AB4-induced apoptosis and autophagy converges at the PI3K/Akt/mTOR signaling. AB4 treatment inhibits this signaling transduction pathway and leads to HCC cell death. Collectively, our study highlighted the anti-cancer efficacy of AB4 and suggested that AB4 might be a novel way to treat HCC.
Collapse
Affiliation(s)
- Shuyi Xue
- Department of Pharmacology, Pharmaceutical College of Qingdao UniversityQingdao 266021, Shandong, China
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Yu Zhou
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
- College of Pharmacy, Pharmaceutical College of Dalian Medical UniversityDalian 116000, Liaoning, China
| | - Jin Zhang
- Department of Hand Surgery, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Zhuo Xiang
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Yang Liu
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Ting Miao
- Institute of Integrative Medicine, Qingdao UniversityQingdao 266003, Shandong, China
| | - Guoxin Liu
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Bangguo Liu
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Xu Liu
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Lixia Shen
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Zhe Zhang
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Mingchun Li
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| | - Qing Miao
- Department of Pharmacy, Hospital 971 of The Navy of Chinese PLAQingdao 266071, Shandong, China
| |
Collapse
|
20
|
Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci 2019; 26:24. [PMID: 30849993 PMCID: PMC6407245 DOI: 10.1186/s12929-019-0517-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is controlled by several metabolic hormones, including thyroid hormone, and characteristically displays high lysosomal activity as well as metabolic stress-triggered autophagy, which is stringently regulated by the levels of hormones and metabolites. Hepatic autophagy provides energy through catabolism of glucose, amino acids and free fatty acids for starved cells, facilitating the generation of new macromolecules and maintenance of the quantity and quality of cellular organelles, such as mitochondria. Dysregulation of autophagy and defective mitochondrial homeostasis contribute to hepatocyte injury and liver-related diseases, such as non-alcoholic fatty liver disease (NAFLD) and liver cancer. Thyroid hormones (TH) mediate several critical physiological processes including organ development, cell differentiation, metabolism and cell growth and maintenance. Accumulating evidence has revealed dysregulation of cellular TH activity as the underlying cause of several liver-related diseases, including alcoholic or non-alcoholic fatty liver disease and liver cancer. Data from epidemiologic, animal and clinical studies collectively support preventive functions of THs in liver-related diseases, highlighting the therapeutic potential of TH analogs. Elucidation of the molecular mechanisms and downstream targets of TH should thus facilitate the development of therapeutic strategies for a number of major public health issues. Here, we have reviewed recent studies focusing on the involvement of THs in hepatic homeostasis through induction of autophagy and their implications in liver-related diseases. Additionally, the potential underlying molecular pathways and therapeutic applications of THs in NAFLD and HCC are discussed.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan, Taiwan, 333.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, 613.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333. .,Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan, Republic of China. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan.
| |
Collapse
|
21
|
Chao X, Ding WX. Role and mechanisms of autophagy in alcohol-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:109-131. [PMID: 31307584 PMCID: PMC7141786 DOI: 10.1016/bs.apha.2019.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is one of the major causes of chronic liver disease worldwide. Currently, no successful treatments are available for ALD. The pathogenesis of ALD is characterized as simple steatosis, fibrosis, cirrhosis, alcoholic hepatitis (AH), and eventually hepatocellular carcinoma (HCC). Autophagy is a highly conserved intracellular catabolic process, which aims at recycling cellular components and removing damaged organelles in response to starvation and stresses. Therefore, autophagy is considered as an important cellular adaptive and survival mechanism under various pathophysiological conditions. Recent studies from our lab and others suggest that chronic alcohol consumption may impair autophagy and contribute to the pathogenesis of ALD. In this chapter, we summarize recent progress on the role and mechanisms of autophagy in the development of ALD. Understanding the roles of autophagy in ALD may offer novel therapeutic avenues against ALD by targeting these pathways.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
22
|
Yazdani HO, Huang H, Tsung A. Autophagy: Dual Response in the Development of Hepatocellular Carcinoma. Cells 2019; 8:cells8020091. [PMID: 30695997 PMCID: PMC6406383 DOI: 10.3390/cells8020091] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionary conserved intracellular mechanism which helps eukaryotic cells in maintaining their metabolic state to afford high-efficiency energy requirements. In the physiology of a normal liver and the pathogenesis of liver diseases, autophagy plays a crucial role. Autophagy has been found to be both upregulated and downregulated in different cancers providing the evidence that autophagy plays a dual role in suppressing and promoting cell survival. Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the major leading cause of cancer mortality worldwide. In light of its high complexity and poor prognosis, it is essential to improve our understanding of autophagy’s role in HCC. In this review, we summarize the dual mechanism of autophagy in the development of HCC and elucidate the currently used therapeutic strategies for anti-HCC therapy.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburg, PA 15213-2582, USA.
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Bgatova NP, Bakhbaeva SA, Taskaeva YS, Makarova VV, Borodin YI. Autophagy in Hepatocytes during Distant Tumor Growth. Bull Exp Biol Med 2018; 165:390-393. [PMID: 30006876 DOI: 10.1007/s10517-018-4177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 12/17/2022]
Abstract
Structural changes in the liver of CBA mice were studied during the development of experimental hepatocarcinoma-29 inoculated into the hip. A decrease in the volume density of hepatocyte cytoplasm, mitochondria, endoplasmic reticulum, and lipid inclusions and an increase in the volume density of lysosomal structures during tumor growth were observed. All stages of intracellular autophagy were recorded by the method of electron microscopy. These stages included the appearance of autophagosomes, autophagolysosomes, and secondary lysosomes in the hepatocyte cytoplasm. Fragments of cytoplasm, glycogen rosettes, mitochondria, and fragments of endoplasmic reticulum with ribosomes were found in autophagosomes. The obtained data indicate the development of non-selective autophagy in the liver during distant tumor growth in aimed at the maintenance of intracellular homeostasis in hepatocytes and energy and trophic homeostasis of organism.
Collapse
Affiliation(s)
- N P Bgatova
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - S A Bakhbaeva
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Makarova
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu I Borodin
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, Li R, Zhang X, Lou Y, He Q, Lv P, Chen Y. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis 2018; 9:768. [PMID: 29991758 PMCID: PMC6039435 DOI: 10.1038/s41419-018-0800-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is an inflammation-mediated hepatocellular injury process associated with cellular autophagy. However, the mechanism by which autophagy regulates ALF remains undefined. Herein, we demonstrated that Eva1a (eva-1 homolog A)/Tmem166 (transmembrane protein 166), an autophagy-related gene, can protect mice from ALF induced by d-galactosamine (D-GalN)/lipopolysaccharide (LPS) via autophagy. Our findings indicate that a hepatocyte-specific deletion of Eva1a aggravated hepatic injury in ALF mice, as evidenced by increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), myeloperoxidase (MPO), and inflammatory cytokines (e.g., TNFα and IL-6), which was associated with disordered liver architecture exhibited by Eva1a−/− mouse livers with ALF. Moreover, we found that the decreased autophagy in Eva1a−/− mouse liver resulted in the substantial accumulation of swollen mitochondria in ALF, resulting in a lack of ATP generation, and consequently hepatocyte apoptosis or death. The administration of Adeno-Associated Virus Eva1a (AAV-Eva1a) or antophagy-inducer rapamycin increased autophagy and provided protection against liver injury in Eva1a−/− mice with ALF, suggesting that defective autophagy is a significant mechanism of ALF in mice. Collectively, for the first time, we have demonstrated that Eva1a-mediated autophagy ameliorated liver injury in mice with ALF by attenuating inflammatory responses and apoptosis, indicating a potential therapeutic application for ALF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 100191, Beijing, China
| | - Dong Xu
- Department of Clinical Laboratory, Peking University First Hospital, 100034, Beijing, China
| | - Dubeiqi Hong
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yan Xia
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Chentong Xu
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Riyong Li
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Qihua He
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China.
| |
Collapse
|
25
|
Li Y, Lu L, Luo N, Wang YQ, Gao HM. Inhibition of PI3K/AKt/mTOR signaling pathway protects against d-galactosamine/lipopolysaccharide-induced acute liver failure by chaperone-mediated autophagy in rats. Biomed Pharmacother 2017; 92:544-553. [PMID: 28577493 DOI: 10.1016/j.biopha.2017.05.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aims to investigate the effects of PI3K/AKt/mTOR signaling pathway on the proliferation and apoptosis in acute liver failure (ALF) by chaperone mediated autophagy (CMA). METHODS The hepatocytes extracted from both normal rats and rats with ALF were assigned to control, acute injury, P13K agonist, and P13K inhibitor groups. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used as part of this investigation to detect the expression of PI3K/AKt/mTOR signaling pathway related-proteins (PI3K, AKt, mTOR), apoptosis related-proteins (Fas, Bax, Bcl-2), chaperone-mediated autophagy (CMA) marker proteins (LAMP-2A, HSC 70), p-PI3K, p-AKt, p-4E-BPI, and p-S6K. An MTT assay was used for analysis of cell proliferation after transfection. Flow cytometry is performed to detect the cell apoptosis. RESULTS In comparison to the normal group, the model group showed enhanced positive rate of PI3K, AKt, mTOR, increased expression levels of PI3K, AKt, mTOR, Fas, Bax, p-PI3K, p-AKt, p-4E-BPI and p-S6K, reduced expression levels of Bcl-2, LAMP-2A and HSC 70. The results in vitro experiment: compared with the acute injury group, the PI3K agonist group showed elevated expression levels of PI3K, AKt, mTOR, Fas, Bax, p-PI3K, p-AKt, p-4E-BPI and p-S6K, decreased expression levels of Bcl-2, LAMP-2A and HSC 70, inhibited cell proliferation, more arrested cells in G1 stage, and promoted cell apoptosis. Opposing this, the P13K inhibitor group exhibited an opposite trend. CONCLUSION In conclusion, inhibition of the PI3K/AKt/mTOR signaling pathway plays a protective role in ALF by promoting CMA expression, which could arrest cell proliferation and promote cell apoptosis.
Collapse
Affiliation(s)
- Yin Li
- Intensive Care Unit, Emergency Medical Research Institute, Tianjin First Center Hospital, Tianjin 300192, PR China
| | - Ling Lu
- Intensive Care Unit, Emergency Medical Research Institute, Tianjin First Center Hospital, Tianjin 300192, PR China
| | - Ning Luo
- Intensive Care Unit, Emergency Medical Research Institute, Tianjin First Center Hospital, Tianjin 300192, PR China
| | - Yong-Qiang Wang
- Intensive Care Unit, Emergency Medical Research Institute, Tianjin First Center Hospital, Tianjin 300192, PR China
| | - Hong-Mei Gao
- Intensive Care Unit, Emergency Medical Research Institute, Tianjin First Center Hospital, Tianjin 300192, PR China.
| |
Collapse
|
26
|
Autophagy in Hepatocytes in Infants With Alpha-1 ATD and Different Liver Disease Outcomes: A Retrospective Analysis. J Pediatr Gastroenterol Nutr 2017; 64:876-882. [PMID: 28045767 DOI: 10.1097/mpg.0000000000001507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES It is unclear whether a distinct activity of pathways removing the antitrypsin (AT) protein in Alpha-1-Antitrypsin Deficiency (α1ATD) are associated with an unfavorable predisposition to liver disease in the future. The aim of this study was to determine whether liverspecific activity of AT protein disposal occurs at infancy in α1ATD with PiZZ phenotype (ATZ). METHODS Liver samples of 17 infants with unfavorable ATZ outcome (Group I, n = 8, median age = 0.35 year) and good outcome (Group II, n = 9, 0.17 year), and 9 with biliary atresia (BA, median age = 0.17 year) as control, were enrolled. For each subject were investigated autophagy activity by mRNA, protein expression (Calnexin, Beclin-1, p62, and Parkin), and hepatocyte ultrastructure with morphometric analyses. RESULTS No significant differences in gene expression in the liver of infants were found between the 2 ATZ groups. Although a correlation between patients' age and protein expression was observed, the ATZ groups differed Parkin immunohistochemical expression. Moreover, the hepatocytes in ATZ infants with unfavorable outcome were characterized by low Parkin expression and the presence of isolated mitophagosoms and numerous enlarged mitochondria. The mentioned findings differed in patients with BA. CONCLUSIONS Thus, mentioned specific features occurring at infancy may suggest association with poor liver outcome. Parkin low expression could have a potential for disease prognosis and treatment; however, further studies in a greater number of patients are needed.
Collapse
|
27
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Bozaykut P, Sahin A, Karademir B, Ozer NK. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev 2016; 157:17-29. [PMID: 27393639 DOI: 10.1016/j.mad.2016.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/23/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022]
|
29
|
Lee YJ, Jang BK. The Role of Autophagy in Hepatocellular Carcinoma. Int J Mol Sci 2015; 16:26629-43. [PMID: 26561802 PMCID: PMC4661843 DOI: 10.3390/ijms161125984] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022] Open
Abstract
Autophagy is a catabolic process involved in cellular homeostasis under basal and stressed conditions. Autophagy is crucial for normal liver physiology and the pathogenesis of liver diseases. During the last decade, the function of autophagy in hepatocellular carcinoma (HCC) has been evaluated extensively. Currently, autophagy is thought to play a dual role in HCC, i.e., autophagy is involved in tumorigenesis and tumor suppression. Recent investigations of autophagy have suggested that autophagy biomarkers can facilitate HCC prognosis and the establishment of therapeutic approaches. In this review, we briefly summarize the current understanding of autophagy and discuss recent evidence for its role in HCC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/genetics
- Autophagy-Related Protein-1 Homolog
- Beclin-1
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Yoo Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu 700-712, Korea.
| | - Byoung Kuk Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu 700-712, Korea.
| |
Collapse
|
30
|
Bui-Nguyen TM, Baer CE, Lewis JA, Yang D, Lein PJ, Jackson DA. Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, Danio rerio. BMC Genomics 2015; 16:853. [PMID: 26499117 PMCID: PMC4619386 DOI: 10.1186/s12864-015-1941-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Exposure to dichlorvos (DDVP), an organophosphorus pesticide, is known to result in neurotoxicity as well as other metabolic perturbations. However, the molecular causes of DDVP toxicity are poorly understood, especially in cells other than neurons and muscle cells. To obtain a better understanding of the process of non-neuronal DDVP toxicity, we exposed zebrafish to different concentrations of DDVP, and investigated the resulting changes in liver histology and gene transcription. Results Functional enrichment analysis of genes affected by DDVP exposure identified a number of processes involved in energy utilization and stress response in the liver. The abundance of transcripts for proteins involved in glucose metabolism was profoundly affected, suggesting that carbon flux might be diverted toward the pentose phosphate pathway to compensate for an elevated demand for energy and reducing equivalents for detoxification. Strikingly, many transcripts for molecules involved in β-oxidation and fatty acid synthesis were down-regulated. We found increases in message levels for molecules involved in reactive oxygen species responses as well as ubiquitination, proteasomal degradation, and autophagy. To ensure that the effects of DDVP on energy metabolism were not simply a consequence of poor feeding because of neuromuscular impairment, we fasted fish for 29 or 50 h and analyzed liver gene expression in them. The patterns of gene expression for energy metabolism in fasted and DDVP-exposed fish were markedly different. Conclusion We observed coordinated changes in the expression of a large number of genes involved in energy metabolism and responses to oxidative stress. These results argue that an appreciable part of the effect of DDVP is on energy metabolism and is regulated at the message level. Although we observed some evidence of neuromuscular impairment in exposed fish that may have resulted in reduced feeding, the alterations in gene expression in exposed fish cannot readily be explained by nutrient deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1941-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tri M Bui-Nguyen
- ORISE Postdoctoral Fellow, Fort Detrick, MD, 21702, USA. .,Current address: US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - John A Lewis
- US Army Center for Environmental Health Research, Fort Detrick, MD, 21702, USA.
| | - Dongren Yang
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - David A Jackson
- US Army Center for Environmental Health Research, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
31
|
Zhang Q, Li Y, Liang T, Lu X, Zhang C, Liu X, Jiang X, Martin RC, Cheng M, Cai L. ER stress and autophagy dysfunction contribute to fatty liver in diabetic mice. Int J Biol Sci 2015; 11:559-68. [PMID: 25892963 PMCID: PMC4400387 DOI: 10.7150/ijbs.10690] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus and nonalcoholic fatty liver disease (NAFLD) are often identified in patients simultaneously. Recent evidence suggests that endoplasmic reticulum (ER) stress and autophagy dysfunction play an important role in hepatocytes injury and hepatic lipid metabolism, however the mechanistic interaction between diabetes and NAFLD is largely unknown. In this study, we used a diabetic mouse model to study the interplay between ER stress and autophagy during the pathogenic transformation of NAFLD. The coexist of inflammatory hepatic injury and hepatic accumulation of triglycerides (TGs) stored in lipid droplets indicated development of steatohepatitis in the diabetic mice. The alterations of components for ER stress signaling including ATF6, GRP78, CHOP and caspase12 indicated increased ER stress in liver tissues in early stage but blunted in the later stage during the development of diabetes. Likewise, autophagy functioned well in the early stage but suppressed in the later stage. The inactivation of unfolded protein response and suppression of autophagy were positively related to the development of steatohepatitis, which linked to metabolic abnormalities in the compromised hepatic tissues in diabetic condition. We conclude that the adaption of ER stress and impairment of autophagy play an important role to exacerbate lipid metabolic disorder contributing to steatohepatitis in diabetes.
Collapse
Affiliation(s)
- Quan Zhang
- 1. Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China, 550004 ; 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Yan Li
- 2. Department of Surgery, School of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Tingting Liang
- 1. Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China, 550004 ; 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Xuemian Lu
- 3. Chinese-American Research Institute for Diabetic Complications RuiAn Center, the Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China, 325200
| | - Chi Zhang
- 3. Chinese-American Research Institute for Diabetic Complications RuiAn Center, the Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China, 325200
| | - Xingkai Liu
- 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA ; 5. The First Hospital of Jilin University, Changchun, China 130021
| | - Xin Jiang
- 5. The First Hospital of Jilin University, Changchun, China 130021
| | - Robert C Martin
- 2. Department of Surgery, School of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mingliang Cheng
- 1. Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China, 550004
| | - Lu Cai
- 3. Chinese-American Research Institute for Diabetic Complications RuiAn Center, the Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China, 325200 ; 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
32
|
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5:158-67. [PMID: 26579442 PMCID: PMC4629219 DOI: 10.1016/j.apsb.2014.12.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.
Collapse
Key Words
- 6ECDCA, 6α-ethyl-chenodeoxycholic acid
- ADH, alcohol dehydrogenase
- AF, activation function
- AKT, protein kinase B
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ASBT, apical sodium dependent bile acid transporter
- Alcoholic liver disease
- Atg, autophagy-related
- Autophagy
- BAAT, bile acid CoA:amino acid N-acyltransferase
- BACS, bile acid CoA synthetase
- BSEP, bile salt export pump
- Bile acids
- CA, cholic acid
- CB1R, cannabinoid receptor type 1
- CDCA, chenodeoxycholic acid
- CREB, cAMP response element-binding protein
- CREBH, cAMP response element-binding protein, hepatocyte specific
- CRTC2, CREB regulated transcription coactivator 2
- CYP, cytochrome P450
- DCA, deoxycholic acid
- DR1, direct repeat 1
- FGF15/19, fibroblast growth factor 15/19
- FGFR4, fibroblast growth factor receptor 4
- FXR, farnesoid X receptor
- Farnesoid X receptor
- FoxO3
- FoxO3a, forkhead box-containing protein class O3a
- GGT, gamma-glutamyltranspeptidase
- HCC, hepatocellular carcinoma
- IR-1, inverted repeat-1
- KO, knockout
- LC3, light chain 3
- LRH-1, liver receptor homolog 1
- LXR, liver X receptor
- MRP4, multidrug resistance protein 4
- NAD+, nicotinamide adenine dinucleotide
- NTCP, sodium taurocholate cotransporting polypeptide
- OSTα/β, organic solute transporter α/β
- PE, phosphatidylethanolamine
- PPARα, peroxisome proliferator-activated receptor alpha
- ROS, reactive oxygen species
- RXRα, retinoid X receptor-alpha
- SHP, small heterodimer partner
- SQSTM, sequestome-1
- SREBP1, sterol regulatory element-binding protein 1
- Sirt1, sirtuin 1
- TCA, taurocholic acid
- TFEB, transcription factor EB
- TLR4, toll-like receptor 4
- TUDCA, tauro-ursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- WAY, WAY-362450
- WT, wild type
Collapse
Affiliation(s)
| | - Wenxing Ding
- Corresponding author. Tel.: +1 913 5889813; fax: +1 913 5887501.
| |
Collapse
|
33
|
Deng J, Huang Q, Wang Y, Shen P, Guan F, Li J, Huang H, Shi C. Hypoxia-inducible factor-1alpha regulates autophagy to activate hepatic stellate cells. Biochem Biophys Res Commun 2014; 454:328-34. [PMID: 25450397 DOI: 10.1016/j.bbrc.2014.10.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
The role of autophagy in Hif-1α modulated activation of hepatic stellate cells was illustrated in current work. Autophagy markers were determined in livers of Schistosoma japonicum infected mice and hypoxia or LPS treated human hepatic stellate cell, LX-2 cells. The action of Hif-1 to autophagy was defined as increase of autophagy markers was significantly suppressed in Hif-1α siRNA transfected cells upon hypoxia or LPS stimulation. The function of autophagy in activation of LX-2 cells was assessed as increase of activation markers was blocked using autophagy inhibitors under hypoxia and LPS stimulation. Conclusively, Hif-1α regulates activation of hepatic stellate cell by modulating autophagy.
Collapse
Affiliation(s)
- Jing Deng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qin Huang
- Department of Medical Rehabilitation, Union Hospital, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yueqin Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Pei Shen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fei Guan
- Department of Parasitology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianrong Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hanju Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
34
|
Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014; 20:12908-12933. [PMID: 25278688 PMCID: PMC4177473 DOI: 10.3748/wjg.v20.i36.12908] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α.
Collapse
|
35
|
Autophagy and microRNA dysregulation in liver diseases. Arch Pharm Res 2014; 37:1097-116. [PMID: 25015129 DOI: 10.1007/s12272-014-0439-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a catabolic process through which organelles and cellular components are sequestered into autophagosomes and degraded via fusion with lysosomes. Autophagy plays a role in many physiological processes, including stress responses, energy homeostasis, elimination of cellular organelles, and tissue remodeling. In addition, autophagy capacity changes in various disease states. A series of studies have shown that autophagy is strictly controlled to maintain homeostatic balance of energy metabolism and cellular organelle and protein turnover. These studies have also shown that this process is post-transcriptionally controlled by small noncoding microRNAs that regulate gene expression through complementary base pairing with mRNAs. Conversely, autophagy regulates the expression of microRNAs. Therefore, dysregulation of the link between autophagy and microRNA expression exacerbates the pathogenesis of various diseases. In this review, we summarize the roles of autophagy and microRNA dysregulation in the course of liver diseases, with the aim of understanding how microRNAs modify key autophagic effector molecules, and we discuss how this dysregulation affects both physiological and pathological conditions. This article may advance our understanding of the cellular and molecular bases of liver disease progression and promote the development of strategies for pharmacological intervention.
Collapse
|
36
|
Shi J, Fung G, Piesik P, Zhang J, Luo H. Dominant-negative function of the C-terminal fragments of NBR1 and SQSTM1 generated during enteroviral infection. Cell Death Differ 2014; 21:1432-41. [PMID: 24769734 DOI: 10.1038/cdd.2014.58] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/23/2014] [Accepted: 03/27/2014] [Indexed: 12/16/2022] Open
Abstract
Coxsackievirus infection induces an abnormal accumulation of ubiquitin aggregates that are generally believed to be noxious to the cells and have a key role in viral pathogenesis. Selective autophagy mediated by autophagy adaptor proteins, including sequestosome 1 (SQSTM1/p62) and neighbor of BRCA1 gene 1 protein (NBR1), are an important pathway for disposing of misfolded/ubiquitin conjugates. We have recently demonstrated that SQSTM1 is cleaved after coxsackievirus infection, resulting in the disruption of SQSTM1 function in selective autophagy. NBR1 is a functional homolog of SQSTM1. In this study, we propose to test whether NBR1 can compensate for the compromise of SQSTM1 after viral infection. Of interest, we found that NBR1 was also cleaved after coxsackievirus infection. This cleavage took place at two sites mediated by virus-encoded protease 2A(pro) and 3C(pro), respectively. In addition to the loss-of-function, we further investigated whether cleavage of SQSTM1/NBR1 leads to the generation of toxic gain-of-function mutants. We showed that the C-terminal fragments of SQSTM1 and NBR1 exhibited a dominant-negative effect against native SQSTM1/NBR1, probably by competing for LC3 and ubiquitin chain binding. Finally, we demonstrated a positive, mutual regulatory relationship between SQSTM1 and NBR1 during viral infection. We showed that knockdown of SQSTM1 resulted in reduced expression of NBR1, whereas overexpression of SQSTM1 led to increased level of NBR1, and vice versa, further excluding the possible compensation of NBR1 for the loss of SQSTM1. Taken together, the findings in this study suggest a novel mechanism through which coxsackievirus infection induces increased accumulation of ubiquitin conjugates and subsequent viral damage.
Collapse
Affiliation(s)
- J Shi
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Fung
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Piesik
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Zhang
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Wang X, Li L, Niu X, Dang X, Li P, Qu L, Bi X, Gao Y, Hu Y, Li M, Qiao W, Peng Z, Pan L. mTOR enhances foam cell formation by suppressing the autophagy pathway. DNA Cell Biol 2014; 33:198-204. [PMID: 24512183 PMCID: PMC3967384 DOI: 10.1089/dna.2013.2164] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Recently, autophagy has drawn more attention in cardiovascular disease as it has important roles in lipid metabolism. Mammalian target of rapamycin (mTOR) is a key regulator of autophagy; however, its effect on atherosclerosis and the underlying mechanism remains undefined. In this study, an obvious upregulation of mTOR and p-mTOR protein was observed in macrophage-derived foam cells. Blocking mTOR expression with specific small interference RNA (siRNA) dramatically suppressed foam cell formation, accompanied by a decrease of lipid deposition. Further mechanistic analysis indicated that suppressing mTOR expression significantly upregulated autophagic marker LC3 expression and downregulated autophagy substrate p62 levels, indicating that mTOR silencing triggered autophagosome formation. Moreover, blocking mTOR expression obviously accelerated neutral lipid delivery to lysosome and cholesterol efflux from foam cells, implying that mTOR could induce macrophage foam cell formation by suppressing autophagic pathway. Further, mTOR silencing significantly upregulated ULK1 expression, which was accounted for mTOR-induced foam cell formation via autophagic pathway as treatment with ULK1 siRNA dampened LC3-II levels and increased p62 expression, concomitant with lipid accumulation and decreased cholesterol efflux from foam cells. Together, our data provide an insight into how mTOR accelerates the pathological process of atherosclerosis. Accordingly, blocking mTOR levels may be a promising therapeutic agent against atherosclerotic complications.
Collapse
Affiliation(s)
- Xiaochuang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lingxia Li
- The Cadre Ward, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaolin Niu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaoyan Dang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ping Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Li Qu
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaoju Bi
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanfen Hu
- The Cadre Ward, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Manxiang Li
- Department of Respiratory Diseases, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wanhai Qiao
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhuo Peng
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
38
|
Chen WT, Zhu G, Pfaffenbach K, Kanel G, Stiles B, Lee AS. GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN. Oncogene 2013; 33:4997-5005. [PMID: 24141775 PMCID: PMC3994182 DOI: 10.1038/onc.2013.437] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
Abstract
Glucose-regulated protein 78 (GRP78), a molecular chaperone widely elevated in human cancers, is critical for endoplasmic reticulum (ER) protein folding, stress signaling and PI3K/AKT activation. Genetic knockout models of GRP78 revealed that GRP78 maintains homeostasis of metabolic organs, including liver, pancreas and adipose tissues. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the most common liver cancers. There is a lack of effective therapeutics for HCC and CC, highlighting the need to further understand liver tumorigenic mechanisms. PTEN, a tumor suppressor that antagonizes the PI3K/AKT pathway, is inactivated in a wide range of tumors, including 40–50% of human liver cancers. To elucidate the role of GRP78 in liver cancer, we created a mouse model with biallelic liver-specific deletion of Pten and Grp78 mediated by Albumin-Cre-recombinase (cPf/f78f/f). Interestingly, in contrast to PTEN, deletion of GRP78 was progressive but incomplete. At 3 months, cPf/f78f/f livers showed hepatomegaly, activation of lipogenic genes, exacerbated steatosis and liver injury, implying that GRP78 protects the liver against PTEN-null mediated pathogenesis. Furthermore, in response to liver injury, we observed increased proliferation and expansion of bile duct and liver progenitor cells in cPf/f78f/f livers. Strikingly, bile duct cells in cPf/f78f/f livers maintained wild-type (WT) GRP78 level while adjacent areas showed GRP78 reduction. Analysis of signaling pathways revealed selective JNK activation, β-catenin downregulation, along with PDGFRα upregulation, which was unique to cPf/f78f/f livers at 6 months. Development of both HCC and CC was accelerated and evident in cPf/f78f/f livers at 8–9 months, coinciding with intense GRP78 expression in the cancer lesions, and GRP78 expression in adjacent normal areas reverted back to the WT level. In contrast, c78f/f livers showed no malignancy even at 14 months. These studies reveal GRP78 is a novel regulator for PTEN-loss mediated liver injury and cancer progression.
Collapse
Affiliation(s)
- W-T Chen
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - G Zhu
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K Pfaffenbach
- Department of Biology, Eastern Oregon University, La Grande, OR, USA
| | - G Kanel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - B Stiles
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | - A S Lee
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochim Biophys Acta Rev Cancer 2013; 1836:15-26. [PMID: 23428608 DOI: 10.1016/j.bbcan.2013.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of autophagy. Among the various biological functions of autophagy identified so far, the link between autophagy and cancer is probably among the most extensively studied and is often viewed as controversial. Autophagy might exert a dual role in cancer development: autophagy can serve as an anti-tumor mechanism, as defective autophagy (e.g., heterozygous knockdown Beclin 1 and Atg7 in mice) promotes the malignant transformation and spontaneous tumors. On the other hand, autophagy functions as a protective or survival mechanism in cancer cells against cellular stress (e.g., nutrient deprivation, hypoxia and DNA damage) and hence promotes tumorigenesis and causes resistance to therapeutic agents. Liver cancer is one of the common cancers with well-established etiological factors including hepatitis virus infection and environmental carcinogens such as aflatoxin and alcohol exposure. In recent years, the involvement of autophagy in liver cancer has been increasingly studied. Here, we aim to provide a systematic review on the close cross-talks between autophagy and liver cancer, and summarize the current status in development of novel liver cancer therapeutic approaches by targeting autophagy. It is believed that understanding the molecular mechanisms underlying the autophagy modulation and liver cancer development may provoke the translational studies that ultimately lead to new therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
40
|
Ni HM, Williams JA, Yang H, Shi YH, Fan J, Ding WX. Targeting autophagy for the treatment of liver diseases. Pharmacol Res 2012; 66:463-74. [PMID: 22871337 DOI: 10.1016/j.phrs.2012.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosomal degradation pathway that can degrade bulk cytoplasm and superfluous or damaged organelles, such as mitochondria, to maintain cellular homeostasis. It is now known that dysregulation of autophagy can cause pathogenesis of numerous human diseases. Here, we discuss the critical roles that autophagy plays in the pathogenesis of liver diseases such as non-alcoholic and alcoholic fatty liver, drug-induced liver injury, protein aggregate-related liver diseases, viral hepatitis, fibrosis, aging and liver cancer. In particular, we discuss the emerging therapeutic potential by pharmacological modulation of autophagy for these liver diseases.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | | | | | | | | | | |
Collapse
|
41
|
Ding WX, Manley S, Ni HM. The emerging role of autophagy in alcoholic liver disease. Exp Biol Med (Maywood) 2011; 236:546-56. [PMID: 21478210 DOI: 10.1258/ebm.2011.010360] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly conserved intracellular catabolic pathway that degrades cellular long-lived proteins and organelles. Autophagy is normally activated in response to nutrient deprivation and other stresses as a cell survival mechanism. Accumulating evidence indicates that autophagy plays a critical role in liver pathophysiology, in addition to maintaining hepatic energy and nutrient balance. Alcohol consumption causes hepatic metabolic changes, oxidative stress, accumulation of lipid droplets and damaged mitochondria; all of these can be regulated by autophagy. This review summarizes the recent findings about the role and mechanisms of autophagy in alcoholic liver disease (ALD), and the possible intervention for treating ALD by modulating autophagy.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|