1
|
Osteogenic Competence and Potency of the Bone Induction Principle: Inductive Substrates That Initiate “Bone: Formation by Autoinduction”. J Craniofac Surg 2021; 33:971-984. [DOI: 10.1097/scs.0000000000008299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
Procopio A, Malucelli E, Pacureanu A, Cappadone C, Farruggia G, Sargenti A, Castiglioni S, Altamura D, Sorrentino A, Giannini C, Pereiro E, Cloetens P, Maier JAM, Iotti S. Chemical Fingerprint of Zn-Hydroxyapatite in the Early Stages of Osteogenic Differentiation. ACS CENTRAL SCIENCE 2019; 5:1449-1460. [PMID: 31482128 PMCID: PMC6716342 DOI: 10.1021/acscentsci.9b00509] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/01/2023]
Abstract
The core knowledge about biomineralization is provided by studies on the advanced phases of the process mainly occurring in the extracellular matrix. Here, we investigate the early stages of biomineralization by evaluating the chemical fingerprint of the initial mineral nuclei deposition in the intracellular milieu and their evolution toward hexagonal hydroxyapatite. The study is conducted on human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days, exploiting laboratory X-ray diffraction techniques and cutting-edge developments of synchrotron-based 2D and 3D cryo-X-ray microscopy. We demonstrate that biomineralization starts with Zn-hydroxyapatite nucleation within the cell, rapidly evolving toward hexagonal hydroxyapatite crystals, very similar in composition and structure to the one present in human bone. These results provide experimental evidence of the germinal role of Zn in hydroxyapatite nucleation and foster further studies on the intracellular molecular mechanisms governing the initial phases of bone tissue formation.
Collapse
Affiliation(s)
- Alessandra Procopio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | | | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| | - Azzurra Sargenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Peter Cloetens
- ID16A Beamline, ESRF, the European Synchrotron, Grenoble 38043, France
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| |
Collapse
|
3
|
Ripamonti U. Functionalized Surface Geometries Induce: " Bone: Formation by Autoinduction". Front Physiol 2018; 8:1084. [PMID: 29467661 PMCID: PMC5808255 DOI: 10.3389/fphys.2017.01084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022] Open
Abstract
The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β) supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized geometric nanotopographic cues to set into motion osteogenesis independently of the exogenous application of the osteogenic soluble molecular signals. Inductive morphogenetic surfaces are the way ahead of biomaterials' science: the connubium of stem cells on primed functionalized surfaces precisely regulates gene expression and the induction of the osteogenic phenotype.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Aquino-Martínez R, Angelo AP, Pujol FV. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Stem Cell Res Ther 2017; 8:265. [PMID: 29145866 PMCID: PMC5689169 DOI: 10.1186/s13287-017-0713-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4) on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO4 scaffolds could have potential applications for bone regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0713-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alcira P Angelo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura Pujol
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
5
|
Ripamonti U, Parak R, Klar RM, Dickens C, Dix-Peek T, Duarte R. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family. Biomaterials 2016; 104:279-96. [DOI: 10.1016/j.biomaterials.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/28/2022]
|
6
|
Ripamonti U, Duarte R, Parak R, Dickens C, Dix-Peek T, Klar RM. Redundancy and Molecular Evolution: The Rapid Induction of Bone Formation by the Mammalian Transforming Growth Factor-β3 Isoform. Front Physiol 2016; 7:396. [PMID: 27660615 PMCID: PMC5014861 DOI: 10.3389/fphys.2016.00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022] Open
Abstract
The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β) supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin), a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins' genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in P. ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of "Bone: formation by autoinduction" in primate models including humans.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| | - Ruqayya Parak
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
- Department of Oral Biological Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| | - Roland M. Klar
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
7
|
Ripamonti U. Redefining the induction of periodontal tissue regeneration in primates by the osteogenic proteins of the transforming growth factor-β supergene family. J Periodontal Res 2016; 51:699-715. [PMID: 26833268 DOI: 10.1111/jre.12356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 12/20/2022]
Abstract
The molecular bases of periodontal tissue induction and regeneration are the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family. These morphogens act as soluble mediators for the induction of tissues morphogenesis sculpting the multicellular mineralized structures of the periodontal tissues with functionally oriented ligament fibers into newly formed cementum. Human TGF-β3 (hTGF-β3 ) in growth factor-reduced Matrigel® matrix induces cementogenesis when implanted in class II mandibular furcation defects surgically prepared in the non-human primate Chacma baboon, Papio ursinus. The newly formed periodontal ligament space is characterized by running fibers tightly attached to the cementoid surface penetrating as mineralized constructs within the newly formed cementum assembling and initiating within the mineralized dentine. Angiogenesis heralds the newly formed periodontal ligament space, and newly sprouting capillaries are lined by cellular elements with condensed chromatin interpreted as angioblasts responsible for the rapid and sustained induction of angiogenesis. The inductive activity of hTGF-β3 in Matrigel® matrix is enhanced by the addition of autogenous morcellated fragments of the rectus abdominis muscle potentially providing myoblastic, pericytic/perivascular stem cells for continuous tissue induction and morphogenesis. The striated rectus abdominis muscle is endowed with stem cell niches in para/perivascular location, which can be dominant, thus imposing stem cell features or stemness to the surrounding cells. This capacity to impose stemness is morphologically shown by greater alveolar bone induction and cementogenesis when hTGF-β3 in Matrigel® matrix is combined with morcellated fragments of autogenous rectus abdominis muscle. The induction of periodontal tissue morphogenesis develops as a mosaic structure in which the osteogenic proteins of the TGF-β supergene family singly, synergistically and synchronously initiate and maintain tissue induction and morphogenesis. In primates, the presence of several homologous yet molecularly different isoforms with osteogenic activity highlights the biological significance of this apparent redundancy and indicates multiple interactions during embryonic development and bone regeneration in postnatal life. Molecular redundancy with associated different biological functionalities in primate tissues may simply represent the fine-tuning of speciation-related molecular evolution in anthropoid apes at the early Pliocene boundary, which resulted in finer tuning of the bone induction cascade.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Laboratory, Department of Oral Medicine & Periodontology, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Aquino-Martínez R, Rodríguez-Carballo E, Gámez B, Artigas N, Carvalho-Lobato P, Manzanares-Céspedes MC, Rosa JL, Ventura F. Mesenchymal Stem Cells Within Gelatin/CaSO4 Scaffolds Treated Ex Vivo with Low Doses of BMP-2 and Wnt3a Increase Bone Regeneration. Tissue Eng Part A 2016; 22:41-52. [DOI: 10.1089/ten.tea.2015.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Patricia Carvalho-Lobato
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria Cristina Manzanares-Céspedes
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
9
|
Mangano FG, Colombo M, Veronesi G, Caprioglio A, Mangano C. Mesenchymal stem cells in maxillary sinus augmentation: A systematic review with meta-analysis. World J Stem Cells 2015; 7:976-991. [PMID: 26240683 PMCID: PMC4515439 DOI: 10.4252/wjsc.v7.i6.976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effectiveness of mesenchymal stem cells (MSCs) in maxillary sinus augmentation (MSA), with various scaffold materials.
METHODS: MEDLINE, EMBASE and SCOPUS were searched using keywords such as sinus graft, MSA, maxillary sinus lift, sinus floor elevation, MSC and cell-based, in different combinations. The searches included full text articles written in English, published over a 10-year period (2004-2014). Inclusion criteria were clinical/radiographic and histologic/ histomorphometric studies in humans and animals, on the use of MSCs in MSA. Meta-analysis was performed only for experimental studies (randomized controlled trials and controlled trials) involving MSA, with an outcome measurement of histologic evaluation with histomorphometric analysis reported. Mean and standard deviation values of newly formed bone from each study were used, and weighted mean values were assessed to account for the difference in the number of subjects among the different studies. To compare the results between the test and the control groups, the differences of regenerated bone in mean and 95% confidence intervals were calculated.
RESULTS: Thirty-nine studies (18 animal studies and 21 human studies) published over a 10-year period (between 2004 and 2014) were considered to be eligible for inclusion in the present literature review. These studies demonstrated considerable variation with respect to study type, study design, follow-up, and results. Meta-analysis was performed on 9 studies (7 animal studies and 2 human studies). The weighted mean difference estimate from a random-effect model was 9.5% (95%CI: 3.6%-15.4%), suggesting a positive effect of stem cells on bone regeneration. Heterogeneity was measured by the I2 index. The formal test confirmed the presence of substantial heterogeneity (I2 = 83%, P < 0.0001). In attempt to explain the substantial heterogeneity observed, we considered a meta-regression model with publication year, support type (animal vs humans) and follow-up length (8 or 12 wk) as covariates. After adding publication year, support type and follow-up length to the meta-regression model, heterogeneity was no longer significant (I2 = 33%, P = 0.25).
CONCLUSION: Several studies have demonstrated the potential for cell-based approaches in MSA; further clinical trials are needed to confirm these results.
Collapse
|
10
|
TGF-β superfamily, molecular signaling and biomimetic features for bone regeneration: historical perspectives and future applications. Updates Surg 2015; 67:321-3. [DOI: 10.1007/s13304-015-0297-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022]
|
11
|
Ortolan XR, Fenner BP, Mezadri TJ, Tames DR, Corrêa R, de Campos Buzzi F. Osteogenic potential of a chalcone in a critical-size defect in rat calvaria bone. J Craniomaxillofac Surg 2014; 42:520-4. [DOI: 10.1016/j.jcms.2013.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/05/2013] [Accepted: 07/31/2013] [Indexed: 11/28/2022] Open
|
12
|
Scarano A, Perrotti V, Artese L, Degidi M, Degidi D, Piattelli A, Iezzi G. Blood vessels are concentrated within the implant surface concavities: a histologic study in rabbit tibia. Odontology 2013; 102:259-66. [PMID: 23783569 DOI: 10.1007/s10266-013-0116-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 04/22/2013] [Indexed: 12/27/2022]
Abstract
Angiogenesis plays a key role in bone formation and maintenance. Bone formation has been reported to initiate in the concavities rather than the convexities in a hydroxyapatite substratum and the implant threads of dental implants. The aim of the present study was to evaluate the number of the blood vessels inside the concavities and around the convexities of the threads of implants in a rabbit tibia model. A total of 32 thread-shaped implants blasted with apatitic calcium phosphate (TCP/HA blend) (Resorbable Blast Texturing, RBT) (Maestro, BioHorizons(®), Birmingham, AL, USA) were inserted in 8 rabbits. Each rabbit received 4 implants, 2 in the right and 2 in left tibia. Implants were retrieved after 1, 2, 4, and 8 weeks and treated to obtain thin ground sections. Statistically significant differences were found in the number of vessels that had formed in the concavities rather than the convexities of the implants after 1 (p = 0.000), and 2 weeks (p = 0.000), whilst no significant differences after 4 (p = 0.546) and 8 weeks (p = 0.275) were detected. The present results supported the hypothesis that blood vessel formation was stimulated by the presence of the concavities, which may provide a suitable environment in which mechanical forces, concentrations and gradients of chemotactic molecules and blood clot retention may all drive vascular and bone cell migration.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via F. Sciucchi 63, 66100, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Maxillary sinus augmentation with adult mesenchymal stem cells: a review of the current literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115:717-23. [PMID: 23313230 DOI: 10.1016/j.oooo.2012.09.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Mesenchymal stem cells (MSCs) have been applied in maxillary sinus augmentation (MSA) with clinically successful results. The purpose of this article was to evaluate the systematically acquired evidence for the effectiveness of cell-based approaches in MSA with various scaffolds, and to narratively assess evidence from additional articles that report effectiveness of cell-based approaches in MSA. MATERIALS AND METHODS Electronic database searches were performed. Inclusion criteria were studies of cell-based approaches in MSA with various scaffolds, in humans, with at least 3 to 4 months of follow-up. Meta-analysis was performed for randomized controlled trials (RCTs) with histologic/histomorphometric evaluation. RESULTS Fifteen studies (4 RCTs) were considered to be eligible for inclusion in the review. The meta-analysis suggested a marginal, nonstatistically significant positive effect of MSCs on the bone regrowth. CONCLUSIONS A number of studies have demonstrated the potential for cell-based approaches in MSA; further RCTs that clearly demonstrate benefits of cell-based approach are needed.
Collapse
|
14
|
Scarano A, Degidi M, Perrotti V, Degidi D, Piattelli A, Iezzi G. Experimental Evaluation in Rabbits of the Effects of Thread Concavities in Bone Formation with Different Titanium Implant Surfaces. Clin Implant Dent Relat Res 2013; 16:572-81. [DOI: 10.1111/cid.12033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Scarano
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| | | | - Vittoria Perrotti
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| | | | - Adriano Piattelli
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| | - Giovanna Iezzi
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| |
Collapse
|
15
|
Skuse GR, Lamkin-Kennard KA. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes. Methods Mol Biol 2013; 1001:99-114. [PMID: 23494423 DOI: 10.1007/978-1-62703-363-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.
Collapse
Affiliation(s)
- Gary R Skuse
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | | |
Collapse
|
16
|
Employing the biology of successful fracture repair to heal critical size bone defects. Curr Top Microbiol Immunol 2012; 367:113-32. [PMID: 23239235 DOI: 10.1007/82_2012_291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone has the natural ability to remodel and repair. Fractures and small noncritical size bone defects undergo regenerative healing via coordinated concurrent development of skeletal and vascular elements in a soft cartilage callus environment. Within this environment bone regeneration recapitulates many of the same cellular and molecular mechanisms that form embryonic bone. Angiogenesis is intimately involved with embryonic bone formation and with both endochondral and intramembranous bone formation in differentiated bone. During bone regeneration osteogenic cells are first associated with vascular tissue in the adjacent periosteal space or the adjacent injured marrow cavity that houses endosteal blood vessels. Critical size bone defects cannot heal without the assistance of therapeutic aids or materials designed to encourage bone regeneration. We discuss the prospects for using synthetic hydrogels in a bioengineering approach to repair critical size bone defects. Hydrogel scaffolds can be designed and fabricated to potentially trigger the same bone morphogenetic cascade that heals bone fractures and noncritical size defects naturally. Lastly, we introduce adult Xenopus laevis hind limb as a novel small animal model system for bone regeneration research. Xenopus hind limbs have been used successfully to screen promising scaffolds designed to heal critical size bone defects.
Collapse
|
17
|
Ripamonti U, Klar RM. Regenerative frontiers in craniofacial reconstruction: grand challenges and opportunities for the mammalian transforming growth factor-β proteins. Front Physiol 2010; 1:143. [PMID: 21423383 PMCID: PMC3059946 DOI: 10.3389/fphys.2010.00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/08/2010] [Indexed: 11/14/2022] Open
Abstract
Science's fascination with bone and its repair processes span for thousands of years since the ancient Greek Hippocrates, the father of Medicine, made the key discovery that bone heals without scarring. Through the centuries, several lucid investigators perceived that the extracellular matrix of bone must be a reservoir of differentiating and morphogenetic factors ultimately responsible for its pronounced healing potential (reviewed in Urist, 1968, 1994; Reddi, 2000; Ripamonti et al., 2006).
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Unit, Medical Research Council/University of the Witwatersrand Johannesburg, South Africa.
| | | |
Collapse
|