1
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
2
|
Dutta B, Loo S, Kam A, Tam JP. Plant-derived cell-penetrating microprotein α-astratide aM1 targets Akt signaling and alleviates insulin resistance. Cell Mol Life Sci 2023; 80:293. [PMID: 37715850 PMCID: PMC10505102 DOI: 10.1007/s00018-023-04937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Insulin-resistant diabetes is a common metabolic disease with serious complications. Treatments directly addressing the underlying molecular mechanisms involving insulin resistance would be desirable. Our laboratory recently identified a proteolytic-resistant cystine-dense microprotein from huáng qí (Astragalus membranaceus) called α-astratide aM1, which shares high sequence homology to leginsulins. Here we show that aM1 is a cell-penetrating insulin mimetic, enters cells by endocytosis, and activates the PI3K/Akt signaling pathway independent of the insulin receptor leading to translocation of glucose transporter GLUT4 to the cell surface to promote glucose uptake. We also showed that aM1 alters gene expression, suppresses lipid synthesis and uptake, and inhibits intracellular lipid accumulation in myotubes and adipocytes. By reducing intracellular lipid accumulation and preventing lipid-induced, PKCθ-mediated degradation of IRS1/2, aM1 restores glucose uptake to overcome insulin resistance. These findings highlight the potential of aM1 as a lead for developing orally bioavailable insulin mimetics to expand options for treating diabetes.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
3
|
Schneider B, Baudry A, Pietri M, Alleaume-Butaux A, Bizingre C, Nioche P, Kellermann O, Launay JM. The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:660683. [PMID: 33912016 PMCID: PMC8072021 DOI: 10.3389/fncel.2021.660683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid-based neurodegenerative diseases such as prion, Alzheimer's, and Parkinson's diseases have distinct etiologies and clinical manifestations, but they share common pathological events. These diseases are caused by abnormally folded proteins (pathogenic prions PrPSc in prion diseases, β-amyloids/Aβ and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease) that display β-sheet-enriched structures, propagate and accumulate in the nervous central system, and trigger neuronal death. In prion diseases, PrPSc-induced corruption of the physiological functions exerted by normal cellular prion proteins (PrPC) present at the cell surface of neurons is at the root of neuronal death. For a decade, PrPC emerges as a common cell surface receptor for other amyloids such as Aβ and α-synuclein, which relays, at least in part, their toxicity. In lipid-rafts of the plasma membrane, PrPC exerts a signaling function and controls a set of effectors involved in neuronal homeostasis, among which are the RhoA-associated coiled-coil containing kinases (ROCKs). Here we review (i) how PrPC controls ROCKs, (ii) how PrPC-ROCK coupling contributes to neuronal homeostasis, and (iii) how the deregulation of the PrPC-ROCK connection in amyloid-based neurodegenerative diseases triggers a loss of neuronal polarity, affects neurotransmitter-associated functions, contributes to the endoplasmic reticulum stress cascade, renders diseased neurons highly sensitive to neuroinflammation, and amplifies the production of neurotoxic amyloids.
Collapse
Affiliation(s)
- Benoit Schneider
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Anne Baudry
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Mathéa Pietri
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Aurélie Alleaume-Butaux
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Chloé Bizingre
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Pierre Nioche
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Odile Kellermann
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Jean-Marie Launay
- Inserm UMR 942, Hôpital Lariboisière, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd., Basel, Switzerland
| |
Collapse
|
4
|
Wang F, Wang S, Zhang Z, Lin Q, Liu Y, Xiao Y, Xiao K, Wang Z. Defective insulin signaling and the protective effects of dimethyldiguanide during follicular development in the ovaries of polycystic ovary syndrome. Mol Med Rep 2017; 16:8164-8170. [PMID: 28990055 PMCID: PMC5779901 DOI: 10.3892/mmr.2017.7678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 08/10/2017] [Indexed: 01/04/2023] Open
Abstract
It is established that the physiological effects of insulin are primarily mediated by the insulin signaling pathway. However, a defective insulin signaling is closely associated with the clinical manifestations of polycystic ovary syndrome (PCOS), which include excess androgen levels, insulin resistance and anovulation, and is involved in the pathophysiology of PCOS at the molecular level. Dimethyldiguanide (DMBG) has been widely employed to alleviate reproduction dysfunction in women with PCOS, however, the exact mechanism of this effect remains unclear. The objective of the present study was to investigate the effects of DMBG on the expression of the insulin signaling pathway in the ovaries of rats with PCOS, and to identify the potential underlying molecular mechanisms of these effects in PCOS. In the present study, a PCOS rat model was induced by letrozole, and successful establishment of the model was confirmed by examining ovarian histology and determining serum testosterone levels, by hematoxylin and eosin staining and ELISA, respectively. Subsequently, the expression of two key elements of insulin signaling, insulin receptor substrate (IRS)‑2 and phosphatidylinositol 3‑kinase (PI3K), was determined by immunohistochemistry and western blot analysis. The results demonstrated that IRS‑2 and PI3K expression was markedly decreased in PCOS ovaries, which was rescued by DMBG treatment. These results indicate that IRS‑2/PI3K signaling may be involved in the development of PCOS and the therapeutic effects of DMBG on PCOS. To further confirm the effects of DMBG on insulin signaling expression during this process, the expression of an additional two downstream proteins, phosphoinositide‑dependent kinase‑1 (PDK‑1) and the mammalian target of rapamycin (mTOR), was also investigated in the present study, and the results demonstrated that the expression of PDK‑1 and mTOR was significantly reduced in PCOS ovaries and increased following DMBG treatment, further indicating that altered insulin signaling may have an important role in the development and treatment of PCOS. In conclusion, the results of the present study indicate that the reduced expression of proteins involved in insulin signaling may contribute to the development of the clinical features of PCOS, and DMBG reverses reduced expression of insulin signaling components, by a mechanism that is yet to be determined, to attenuate certain symptoms of PCOS, such as obesity. To the best of our knowledge, the present study is the first to provide data regarding the detailed changes of insulin signaling during the development and treatment of PCOS, and may provide an important reference for clinical PCOS treatment.
Collapse
Affiliation(s)
- Fan Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Shaobing Wang
- State Key Laboratory for Evaluation of Exercise Physiological Functions from General Administration of Sport of China, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Qingqiang Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Yiping Liu
- State Key Laboratory for Evaluation of Exercise Physiological Functions from General Administration of Sport of China, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Yijun Xiao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Kaizhuan Xiao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
5
|
Oudart JB, Doué M, Vautrin A, Brassart B, Sellier C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Brassart-Pasco S, Ramont L. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget 2016; 7:1516-28. [PMID: 26621838 PMCID: PMC4811477 DOI: 10.18632/oncotarget.6399] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/14/2015] [Indexed: 11/25/2022] Open
Abstract
Type XIX collagen is a minor collagen associated with basement membranes. It was isolated for the first time in a human cDNA library from rhabdomyosarcoma and belongs to the FACITs family (Fibril Associated Collagens with Interrupted Triple Helices). Previously, we demonstrated that the NC1 domain of collagen XIX (NC1(XIX)) exerts anti-tumor properties on melanoma cells by inhibiting their migration and invasion. In the present work, we identified for the first time the integrin αvβ3 as a receptor of NC1(XIX). Moreover, we demonstrated that NC1(XIX) inhibits the FAK/PI3K/Akt/mTOR pathway, by decreasing the phosphorylation and activity of the major proteins involved in this pathway. On the other hand, NC1(XIX) induced an increase of GSK3β activity by decreasing its degree of phosphorylation. Treatments targeting this central signaling pathway in the development of melanoma are promising and new molecules should be developed. NC1(XIX) seems to have the potential for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Manon Doué
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Alexia Vautrin
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christèle Sellier
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Aurelie Dupont-Deshorgue
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| |
Collapse
|
6
|
Nuñez I, Rodriguez Pino M, Wiley DJ, Das ME, Chen C, Goshima T, Kume K, Hirata D, Toda T, Verde F. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5. eLife 2016; 5. [PMID: 27474797 PMCID: PMC5011436 DOI: 10.7554/elife.14216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
Collapse
Affiliation(s)
- Illyce Nuñez
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Marbelys Rodriguez Pino
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - David J Wiley
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Maitreyi E Das
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
| | - Chuan Chen
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Toda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.,The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Fulvia Verde
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
7
|
Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway. Int Immunopharmacol 2015; 29:568-573. [DOI: 10.1016/j.intimp.2015.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
|
8
|
Dai Z, Pan S, Chen C, Cao L, Li X, Chen X, Su X, Lin S. Down-regulation of succinate dehydrogenase subunit B and up-regulation of pyruvate dehydrogenase kinase 1 predicts poor prognosis in recurrent nasopharyngeal carcinoma. Tumour Biol 2015; 37:5145-52. [PMID: 26547584 DOI: 10.1007/s13277-015-4107-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 01/24/2023] Open
Abstract
Succinate dehydrogenase subunit B (SDHB) and pyruvate dehydrogenase kinase 1 (PDK1) play key roles in the regulation of growth and survival of various cancers. This study aimed to investigate expression of SDHB and PDK1 in recurrent nasopharyngeal carcinoma (rNPC) tissues and analyzed the association of SDHB and PDK1 expression with the clinical significance and potential prognostic implication of rNPC. Immunohistochemistry was performed to determine the expression of SDHB and PDK1 in tissues in primary NPC (pNPC) and rNPC patients. Our results revealed that expression of SDHB in rNPC was significantly lower than that in pNPC, while the expression of PDK1 was higher compared to pNPC. The expression levels of SDHB and PDK1 were associated with T stage, N stage, clinical stage, and metastasis of rNPC. Survival analysis showed that patients with low SDHB expression had a significantly shorter overall survival time than those with high SDHB expression. Patients with high PDK1 expression had a shorter survival time than patients with low PDK1 expression. Multivariate analysis showed that the expression of SDHB and PDK1 was an independent predictor for the survival of patients with rNPC. Our results demonstrated that down-regulation of SDHB and up-regulation of PDK1 may be novel biomarkers for predicting advanced tumor progression and unfavorable prognosis in rNPC patients.
Collapse
Affiliation(s)
- ZhiJian Dai
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Shenhua Pan
- Department of Pathology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congxi Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Longhe Cao
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xianhui Li
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiaofeng Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiaoqing Su
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Sen Lin
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
9
|
Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated with reduced viability of motor neurons in an ALS model. Mol Cell Neurosci 2015; 68:303-13. [PMID: 26320681 DOI: 10.1016/j.mcn.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/16/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.
Collapse
|
10
|
Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation. PLoS Pathog 2015; 11:e1005073. [PMID: 26241960 PMCID: PMC4524729 DOI: 10.1371/journal.ppat.1005073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/07/2015] [Indexed: 01/05/2023] Open
Abstract
In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases. Transmissible Spongiform Encephalopathies (TSEs), commonly named prion diseases, are caused by deposition in the brain of pathogenic prions PrPSc that trigger massive neuronal death. Because of our poor understanding of the mechanisms sustaining prion-induced neurodegeneration, there is to date no effective medicine to combat TSEs. The current study demonstrates that ROCK kinases are overactivated in prion-infected cells and contribute to prion pathogenesis at two levels. First, PrPSc-induced ROCK overactivation affects neuronal polarity with synapse disconnection, axon/dendrite degradation, and disturbs neuronal functions. Second, ROCK overactivity amplifies the production of pathogenic prions. The pharmacological inhibition of ROCK protects diseased neurons from PrPSc toxicity by preserving neuronal architecture and functions and lowering PrPSc level. Inhibition of ROCK in prion-infected mice reduces brain PrPSc levels, improves motor activity and extends lifespan. This study opens up new avenues to design ROCK-based therapeutic strategies to fight TSEs.
Collapse
|
11
|
Bär S, Rommelaere J, Nüesch JPF. PKCη/Rdx-driven phosphorylation of PDK1: a novel mechanism promoting cancer cell survival and permissiveness for parvovirus-induced lysis. PLoS Pathog 2015; 11:e1004703. [PMID: 25742010 PMCID: PMC4351090 DOI: 10.1371/journal.ppat.1004703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/26/2015] [Indexed: 01/12/2023] Open
Abstract
The intrinsic oncotropism and oncosuppressive activities of rodent protoparvoviruses (PVs) are opening new prospects for cancer virotherapy. Virus propagation, cytolytic activity, and spread are tightly connected to activation of the PDK1 signaling cascade, which delays stress-induced cell death and sustains functioning of the parvoviral protein NS1 through PKC(η)-driven modifications. Here we reveal a new PV-induced intracellular loop-back mechanism whereby PKCη/Rdx phosphorylates mouse PDK1:S138 and activates it independently of PI3-kinase signaling. The corresponding human PDK1phosphoS135 appears as a hallmark of highly aggressive brain tumors and may contribute to the very effective targeting of human gliomas by H-1PV. Strikingly, although H-1PV does not trigger PDK1 activation in normal human cells, such cells show enhanced viral DNA amplification and NS1-induced death upon expression of a constitutively active PDK1 mimicking PDK1phosphoS135. This modification thus appears as a marker of human glioma malignant progression and sensitivity to H-1PV-induced tumor cell killing. The H-1 protoparvovirus (H-1PV) is the first replication-competent member of the Parvoviridae family to undergo a phase I/IIa clinical trial in patients suffering from glioblastoma multiforme. Although the intrinsic oncotropism and oncolytic activity of protoparvoviruses are well known, the underlying molecular mechanisms remain elusive. Here we identify a PV-induced intracellular loop-back mechanism that promotes PV replication and cytotoxicity through PI3-kinase-independent stimulation of PDK1 and of the PKC and PKB/Akt1 downstream kinases. This mechanism involves PKCη/Rdx-mediated phosphorylation of PDK1 (at S138 in mouse or S135 in human). Interestingly, this phosphorylation appears as a hallmark of highly aggressive brain tumors. Although H-1PV does not promote it in normal human cells, experimentally administered activated PDK1 variants were able to sensitize these cells to virus infection. These data lead us to propose PDK1phosphoS135 as a new candidate marker for monitoring tumor progression and responsiveness to oncolytic parvovirotherapy, particularly in the case of highly aggressive brain tumors. Furthermore, the sensitivity of PDK1phosphoS135-positive cell lines to inhibitors of PKCη/Rdx argues for considering this complex as a potential target for anticancer drug development.
Collapse
Affiliation(s)
- Séverine Bär
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean Rommelaere
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürg P. F. Nüesch
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
12
|
Calleja V, Laguerre M, de Las Heras-Martinez G, Parker PJ, Requejo-Isidro J, Larijani B. Acute regulation of PDK1 by a complex interplay of molecular switches. Biochem Soc Trans 2014; 42:1435-40. [PMID: 25233428 DOI: 10.1042/bst20140222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositide-dependent kinase 1 (PDK1) is the master regulator of at least 23 other AGC kinases whose downstream signalling has often been implicated in various diseases and in particular in cancer. Therefore there has been great interest in determining how PDK1 is controlled and how it regulates its substrates spatially and temporally. The understanding of these mechanisms could offer new possibilities for therapeutic intervention. Over the years, a more comprehensive view of the mechanisms involved in the regulation of PDK1 has emerged and these comprise serine/threonine as well as tyrosine phosphorylation, subcellular localization, regulator binding and conformation status. In the present review, we discuss how various molecular mechanisms are together responsible for the conformational regulation behind the activation of PDK1 in cells.
Collapse
Affiliation(s)
| | - Michel Laguerre
- ‡Institut Européen de Chimie et Biologie, Université de Bordeaux, UMR 5248, 2 rue Robert Escarpit, F-33607 Pessac, France
| | | | | | - Jose Requejo-Isidro
- §Biophotonics Lab, Unidad de Biofísica CSIC-UPV/EHU, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | | |
Collapse
|
13
|
Han L, Zhang G, Zhang N, Li H, Liu Y, Fu A, Zheng Y. Prognostic potential of microRNA-138 and its target mRNA PDK1 in sera for patients with non-small cell lung cancer. Med Oncol 2014; 31:129. [PMID: 25064732 DOI: 10.1007/s12032-014-0129-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 02/08/2023]
Abstract
microRNA (miR)-138 has been recognized as a potential tumor suppressor via regulating 3-phosphoinositide-dependent protein kinase-1 (PDK1) expression in non-small cell lung cancer (NSCLC) cells. The aim of this study was to investigate miR-138 and PDK1 mRNA expression in serum of NSCLC and their associations with patients' prognosis. miR-138 and PDK1 mRNA expressions in 100 NSCLCs and 100 healthy control sera were detected by quantitative real-time PCR. miR-138 expression level was significantly lower in NSCLC serum samples than in healthy control serum samples (P < 0.001), while PDK1 mRNA expression level was significantly increased in NSCLC serum samples compared to healthy control serum samples (P < 0.001). In addition, miR-138 downregulation and PDK1 upregulation were both significantly associated with advanced tumor-node-metastasis (TNM) stage (both P = 0.002) and positive lymph node metastasis (both P = 0.01) of NSCLC patients. Moreover, the overall survival of NSCLC patients with low miR-138 expression or high PDK1 mRNA expression was obviously shorter than those with high miR-138 expression or low PDK1 mRNA expression (both P < 0.001). Notably, NSCLC patients with combined miR-138 downregulation and PDK1 upregulation (miR-138-low/PDK1-high) had shortest overall survival (P < 0.001). Furthermore, multivariate analysis showed that miR-138 expression (P = 0.01), PDK1 expression (P = 0.01), and combined expression of miR-138 and PDK1 (miR-138/PDK1, P = 0.001) were all independent prognostic factors for overall survival in NSCLC patients. Deregulation of miR-138/PDK1 cascade may be implicated in carcinogenesis and cancer progression of human NSCLC. More importantly, miR-138 and PDK1 may synergistically predict patients' prognosis and their combination may represent a promising prognostic biomarker of human NSCLC.
Collapse
Affiliation(s)
- Lihong Han
- Department of Respiratory Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, Henan Province, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Park J, Li Y, Kim SH, Yang KJ, Kong G, Shrestha R, Tran Q, Park KA, Jeon J, Hur GM, Lee CH, Kim DH, Park J. New players in high fat diet-induced obesity: LETM1 and CTMP. Metabolism 2014; 63:318-27. [PMID: 24333006 DOI: 10.1016/j.metabol.2013.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Obesity contributes to insulin resistance and is a risk factor for diabetes. C-terminal modulator protein (CTMP) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) have been reported to influence the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) signaling pathway via the modulation of PKB activity, a key player for insulin signaling. However, it remains unclear whether CTMP and LETM1 are associated with PI3K/PKB signaling in mouse models of obesity. MATERIALS/METHODS To address this question, we used two different mouse models of obesity, including high-fat diet (HFD)-induced diabetic mice and genetically modified obese mice (ob/ob mice). The levels of insulin-signaling molecules in these mice were determined by immunohistochemical and Western blot analyses. The involvement of CTMP and LETM1 in PI3K/PKB signaling was investigated in HEK293 cells by transient transfection and adenovirus-mediated infection. RESULTS We found that the levels of insulin receptor, phosphorylated PKB, and LETM1 were lower and the level of CTMP was higher in the adipose tissue of obese mice on an HFD compared to lean mice on a chow diet. Similar results were obtained in ob/ob mice. In HEK293 cells, the activation of PKB increased the LETM1 level, and inhibition of PKB increased the CTMP level. The overexpression of CTMP suppressed the insulin-induced increase in PKB phosphorylation, which was abrogated by co-overexpression with LETM1. CONCLUSION These results suggest that CTMP and LETM1 may participate in impaired insulin signaling in the adipose tissue of obese mice, raising the possibility that these parameters may serve as new candidate biomarkers or targets in the development of new therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Jisoo Park
- Metabolic Disease Institute, University of Cincinnati, Cincinnati, OH 45437, USA; Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Yuwen Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, 710032, China
| | - Seon-Hwan Kim
- Department of Neurosurgery, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Keum-Jin Yang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, South Korea
| | - Gyeyeong Kong
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Robin Shrestha
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Quangdon Tran
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Kyeong Ah Park
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Juhee Jeon
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Gang Min Hur
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, South Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-701, South Korea.
| | - Jongsun Park
- Metabolic Disease Institute, University of Cincinnati, Cincinnati, OH 45437, USA; Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea.
| |
Collapse
|
15
|
Ye XW, Yu H, Jin YK, Jing XT, Xu M, Wan ZF, Zhang XY. miR-138 inhibits proliferation by targeting 3-phosphoinositide-dependent protein kinase-1 in non-small cell lung cancer cells. CLINICAL RESPIRATORY JOURNAL 2014; 9:27-33. [PMID: 24405893 DOI: 10.1111/crj.12100] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/13/2013] [Accepted: 01/04/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Underlying mechanisms of non-small cell lung cancer (NSCLC) development remain poorly understood. miR-138 and 3-phosphoinositide-dependent protein kinase-1 (PDK1) have been reported to be involved in the genesis of NSCLC. The aim of this study was to investigate the role and mechanisms of miR-138 and PDK1 in human NSCLC cells. METHODS The effect of miR-138 on proliferation of A549 lung cancer cells was first examined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The expression of PDK1 in A549 lung cancer cells was assessed by real-time polymerase chain reaction further. A luciferase reporter activity assay was conducted to confirm target association between miR-138 and 3' untranslated region (3'-UTR) of PDK1. Finally, the role of PDK1 on proliferation of A549 cells was evaluated by transefection of PDK1 small interfering RNA (siRNA). RESULTS Proliferation of A549 lung cancer cells was suppressed by miR-138 in a concentration-dependent manner. Furthermore, miR-138 can bind to the 3'-UTR of PDK1 and downregulate expression of PDK1 at both mRNA and protein levels. Knockdown of PDK1 by siRNA significantly inhibits the proliferation of A549 lung cancer cells. CONCLUSIONS These findings suggest that miR-138 as a potential tumor suppressor could inhibit cell proliferation by targeting PDK1 in NSCLC cells, which could be employed as a potential therapeutic target for miRNA-based NSCLC therapy.
Collapse
Affiliation(s)
- Xian-wei Ye
- Department of Respiratory Medicine, The People's Hospital of Guizhou Province, Guiyang, China; Academic Department, Guizhou Institute of Respiratory Diseases, Guiyang, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang HP, Pan JB, Zhang C, Ji N, Wang H, Ji ZL. Network understanding of herb medicine via rapid identification of ingredient-target interactions. Sci Rep 2014; 4:3719. [PMID: 24429698 PMCID: PMC3893644 DOI: 10.1038/srep03719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 01/03/2023] Open
Abstract
Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- 1] State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China [2]
| | - Jian-Bo Pan
- 1] Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, PR China [2]
| | - Chi Zhang
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Nan Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Hao Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Zhi-Liang Ji
- 1] State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China [2] Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, PR China
| |
Collapse
|
17
|
Characterization of fragmented 3-phosphoinsitide-dependent protein kinase-1 (PDK1) by phosphosite-specific antibodies. Life Sci 2013; 93:700-6. [DOI: 10.1016/j.lfs.2013.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/31/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022]
|
18
|
Huang SW, Lien JC, Kuo SC, Huang TF. Antiangiogenic mechanisms of PJ-8, a novel inhibitor of vascular endothelial growth factor receptor signaling. Carcinogenesis 2012; 33:1022-30. [DOI: 10.1093/carcin/bgs127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
19
|
Murphy ST, Alton G, Bailey S, Baxi SM, Burke BJ, Chappie TA, Ermolieff J, Ferre R, Greasley S, Hickey M, Humphrey J, Kablaoui N, Kath J, Kazmirski S, Kraus M, Kupchinsky S, Li J, Lingardo L, Marx MA, Richter D, Tanis SP, Tran K, Vernier W, Xie Z, Yin MJ, Yu XH. Discovery of novel, potent, and selective inhibitors of 3-phosphoinositide-dependent kinase (PDK1). J Med Chem 2011; 54:8490-500. [PMID: 22040023 DOI: 10.1021/jm201019k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Analogues substituted with various amines at the 6-position of the pyrazine ring on (4-amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)pyrazin-2-ylmethanone were discovered as potent and selective inhibitors of PDK1 with potential as anticancer agents. An early lead with 2-pyridine-3-ylethylamine as the pyrazine substituent showed moderate potency and selectivity. Structure-based drug design led to improved potency and selectivity against PI3Kα through a combination of cyclizing the ethylene spacer into a saturated, five-membered ring and substituting on the 4-position of the aryl ring with a fluorine. ADME properties were improved by lowering the lipophilicity with heteroatom replacements in the saturated, five-membered ring. The optimized analogues have a PDK1 Ki of 1 nM and >100-fold selectivity against PI3K/AKT-pathway kinases. The cellular potency of these analogues was assessed by the inhibition of AKT phosphorylation (T308) and by their antiproliferation activity against a number of tumor cell lines.
Collapse
Affiliation(s)
- Sean T Murphy
- Pfizer Global Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|